/
|
- CAPS-11 USER’S GUIDE
DEC-11-OTUGA-A-D
!

|

1_

{

@

|

‘|

.I-'_ |'
4

* |

| dlilgliltlall

CAPS-11 USER’S GUIDE
DEC-11-OTUGA-A-D

digital equipment corporation - maynard, massachusetts

First Printing, Octcber, 1973

The information in this document is subject to change without notice
and should not be ccnstrued as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1973 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's c¢ritical evaluation. All comments
received will be considered when subsequent documents are prepared.

The following are trademarks of Digital Eguipment Corporation:

CDP DIGITAL INDAC PS/8

COMPUTER LAB DNC KAlQD QUICKPOINT

COMSYST EDGRIN LAB-8 RAD-8

COMTEX EDUSYSTEM LAB-8/e RSTS

CDT FLIF CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM

DECCOM GLC-8 0S/8 RT-11

DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8
UNIBUS

12/75-15

CHAPTER

CHAPTER

CHAPTER

CONTENTS

THE CAPS-11 PROGRAMMING SYSTEM

SYSTEM CONFIGURATION
Hardware Components
Software Components

WHAT IS A CAPS-1l1 CASSETTE?
The Format of a Cassette
The Sentinel File

THE SYSTEM CASSETTE

MOUNTING AND DISMOUNTING A CASSETTE

CONSOLE OPERATION
PDP-11/10 PROGRAMMER'S CONSOLE

OPERATING THE CONSOLE TERMINAL (IA30 DECwriter)

Operating the LS11 Line Printer

PROGRAMMING THE FDP-11l

GENERAIL, SYSTEM STRUCTURE
Status Register Format
UNIBUS

Device Interrupts
Instruction Set
Addressing

INSTRUCTION CAPABILITY

PROCESSOR USE OF STACKS
Subroutines

Interrupts

Traps

USING THE CAPS-11 MONITOR
LOADING INSTRUCTIONS

SYSTEM CONVENTIONS

File Formats

Input/Output Devices

Filenames and Extensions
Entering I/0 Information
Special Characters and Commands
Error Megssage Format

KEYBOARD MONITOR COMMANDS
RUN Command

LOAD Command

START Command

DATE Command

iii

Page

11
NN

11
Ul W

|
un

A Y
(93]

-l ~d
N o

1
b W)

1
L¥-]

11
[l -
(=]

NN N N I;JNNNNN

CHAPTER

CHAPTER

W W W W W W W W W W W
a
[N N . N N

W
L8]

L
.
[=a]

b e b B P e o B
s 8 & 8 & 8 8 & 8 & »
Bl b b S b B b P

® 4 4 s 2 8 8 0w

PO whH-

o
[
n

4.6

DIRECTORY Command
ZERO Command
SENTINEL Command
VERSION Command

KEYBOARD MONITOR SECTIONS
Cassette Bootstrap (CBOOT)
Resident Monitor (RESMON)

Cassette Loader for CAPS-11 (CLODll)

Command String Interpreter (CSI)

Cassette Absolute Loader (CABLDR)

Keyboard Listener (KBL)
System Communication (SYSCOM)

USER PROGRAM LOADING PROCESS
NOTES ON DEVICE HANDLERS

KEYBOARD MONITOR ERROR MESSAGES

EDITING THE SOURCE PROGRAM

CALLING AND USING THE EDITOR
Editor Options

Input and Output Specifications
Restarting the Editor

MODES OF OPERATION
SPECIAL KEY COMMANDS
COMMAND STRUCTURE
Arguments

Command Strings
The Current Location Pointer

Character and Line Oriented Command Properties

Repetitive Execution

Input and Output Commands
Pointer Relocation Commands
Search Commands

Text Modification Commands
Utility Commands

ERROR MESSAGES

EXAMPLE USING THE EDITOR

ASSEMBLING THE SOURCE PROGRAM
CALLING AND USING THE ASSEMBLER
Assembler Options

Input and Output Specifications
Restarting the Assembler

CHARACTER SET

iv

[=]

1
HHWOUOIWU

[}
'S

b
o« o

L S RN NN)
1

1
]
%)

e

umohbnunonn
s & & & &
W W W wiw
M

[F 00 Wy S

N

A RSN RN RN ENIENEN RN NN N N | [=)]
a » & & 8 8 8 W 4 8 & 8 &

HHMHFFFEFWYO-IMWN bWk

(LEURCURURLAUNEL RV RN R RO RS, RE R
B~ O

4 % 4 8 ¥ B 8 ¥ B " 3 5 3 @
€O 00 0d OO MmeE®

HMHMRBMEWYO-IOVO &W N

(URHEURC R L RU RV ROROURUNGNE R]
[N =]

(LR R N Y]

STATEMENTS
Labels
Operators
Operands
Comments
Format Control

SYMBOLS

Permanent Symbols

User=Defined Symbols

Directly Assigning Values to Symbols
Register Symbols

EXPRESSIONS

Arithmetic and Logical Operators
Numbers

ASCII Conversion

Assembly Location Counter

Modes of Expressions

RELOCATION AND LINKING

ADDRESSING MODES

Register Mode

Deferred Register Mode
Autoincrement Mode

Peferred Autoincrement Mode
Autodecrement Mode

Deferrred Autodecrement Mode
Index Mode

Deferred Index Mode
Immediate Mode

Absolute Mode

Relative Mode

Deferred Relative Mode

Table of Mode Forms and Codes
Instruction Forms

ASSEMBLER DIRECTIVES
.TITLE

+GLOBL

Program Section Directives
. EOT

+EVEN

+END

« WORD

.BYTE

+ASCII

+RADS0

«LIMIT

Listing Control Directives
Conditional Assembly Directives

WRITING POSITION INDEPENDENT CODE (PIC)
Position Independent Modes

Absolute Modes

Writing Automatic PIC

Writing non-Automatic PIC

v

el
o
Te]
1]

(SR NSRS
[I |
AU b

[I T I |
O 0~~~

oo

Page

5.10 LOADING UNUSED TRAP VECTORS 5-136
5.11 CODING TECHNIQUES 5=-137
5.11.1 Altering Register Contents 5=-37
5.11.2 Subroutines 5-38
5.12 ASSEMBLY DIALOGUE 5-~44
5.13 ASSEMBLY LISTING 5-45
5.14 OBJECT MODULE OUTPUT 5-46
5.14.1 Global Symbol Directory 5-46
5.14.2 Text Blocks 5-46
5.14.,3 Relocation Directory 5-46
5.15 ERROR CODES 5-47
CHAPTER 6 LINKING ASSEMBLED PROGRAMS
6.1 CALLING AND USING THE LINKER 6=-2
6.1,1 Linker Options 6=2
6,1,2 Input and Output Specifications 6-5
6.1.3 Restarting the Linker 6-5
6.2 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-6
6,2.1 Named and Unnamed Control Sections 6-6
6.3 GLOBAL SYMBOLS 6-7
6.4 INPUT AND OUTPUT 6=7
6.4.1 Object Modules 6-7
6.4,2 Load Module 6-7
6.4,3 Load Map 6-8
6.5 ERROR MESSAGES 6-9
6.5.1 Non-Fatal Errors 6-9
6.5.2 Fatal Errors 6-11
6.6 EXAMPLE USING THE LINKER 6=13
CHAPTER 7 DEBUGGING THE OBECT PROGRAM
7.1 CALLING AND USING ODT 7-1
7.1.1 ODT Options 7=2
7.1.2 Input/Output Specifications 7=2
7.1.3 Restarting ODT 7=2
7.2 REILOCATION 7-2
7.2.1 Relocatable Expressions 7=3
7.3 COMMANDS AND FUNCTIONS 7-4
7.3.1 Printout Formats 1=4
7.3.2 Opening, Changing, and Closing Locations 7-5
7.3.3 Accessing General Registers (-7 7-8
7.3.4 Accessing Internal Registers 7-8
7.3.5 Radix 50 Mode, X 7-9
7.3.6 Breakpoints 7-11

vi

7.3.7 Running the Program 7-11
7.3.8 Single-Instruction Mode 7=13
7.3.9 Searches 7=-14
7.3.10 The Constant Register 7=15
7.3.11 Memory Block Initialization 7-15
7.3.12 Calculating Offsets 7-16
7.3.13 Relocation Register Commands 7=-17
7.3.14 The Relocation Calculators 7-18
7.3.15 ODT's Priority Level 7-18
7.3.16 ASCII Input and Output 7=-19
7.4 PROGRAMMING CONSIDERATIONS 7=-20
7.4,.1 Functional Organization 7=-20
7.4.2 Breakpoints 7=20
7.4.3 Searches =25
7.5 ERROR DETECTION 7=26
7.6 EXAMPLE USING ODT 7-26
CHAPTER 8 PERIPHERAL INTERCHANGE PROGRAM
8.1 CALLING AND USING PIP 8~1
8.1.1 PIP Options 8~1
8.1.2 Input and Output Specifications 8-2
8.1.13 Restarting PIP 8-5
8.2 ERROR MESSAGES 8~5
CHAPTER 9 INPUT/QUTPUT PROGRAMMING
9.1 COMMUNICATING WITH RESMON 9~1
5.2 DEVICE ASSIGNMENTS 9-3
9.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS 5-3
9.3.1 Formatted/Unformatted I/0 (excluding Cassette) 9~3
9.3.2 Unformatted Cassette 9=7
9.4 MODES 9-~-7
9.4.1 Formatted ASCII 9~8
9.4.2 Unformatted ASCII 9~11
9.4.3 Formatted Binary 9-~-11
9.4.4 Unformatted Binary 9-12
9.5 NON=-DATA TRANSFER COMMANDS 9=-12
9,5.1 RESET 9-13
9,5.2 RESTART 9~113
9.5.3 CNTRLO 9~113
9.6 CASSETTE FILE I/0 COMMANDS 9-14
9.6.1 SEEK 9-14
9.6,2 SEEKF 9-15
9.6.3 ENTER 9-16
9.6.4 CLOSE 9-18
9.7 DATA TRANSFER COMMANDS 9-19
9,7.1 READ 9-19

vii

APPENDIX

APPENDIX

APPENDIX

9.7.2 WRITE

9.7.3 Device Conflicts in Data Transfer Commands
9,.7.4 WAITR (Wait, Return)

9.7.5 Single Buffer Transfer on One Device

9.7.6 Doub:le Buffering

9.8 CASSETTE I/0O PRIMITIVES

9.9 ERROR MESSAGES

9.10 EXAMPLE OF PROGRAM USING RESMON

APPENDICES
A ASCII CHARACTER CODES
A.l KEYBOARD DIFPERENCES
A.2 CHARACTER CODES
B ASSEMBLY LANGUAGE SUMMARY
B.1l TERMINATORS
B.2 ADDRESS MODE SYNTAX
B.3 INSTRUCTIONS
B.3.1 Double Operand Instructions
B,3.2 Single Operand Instructions
B,3.3 Rotate/Shift
B.3.4 Operation Instructions
B.3.5 Branch Instructions
B.3.6 Subroutine Call
B.3.7 Subroutine Return
B.4 ASSEMBLER DIRECTIVES
B.4.1 Conditional Directives
C COMMAND AND ERROR MESSAGE SUMMARIES
c.l KEYBOARD MONITOR
C.2 EDITOR
C.3 ASSEMBLER
C.4 LINKER
c.5 oDpT
C.6 PIP
C.7 RESMON

viii

B-2
B-13
B-4
B-4
B-5
B=6
B=-7
B-8
B-9

B-9
B-10

c-1
c-4
c-8
c-12
c-16
c-19

C=22

Page

APPENDIX D SYSTEM DEMONSTRATION
D.1l SYSTEM START-UP D=1
D.2 SYSTEM DEMONSTRATION D=2
APPENDIX E CAPS=11 SOFTWARE SUPPORT INFORMATION
E.l CAPS=-11 KEYBOARD MONITOR LOADING PROCESS E-1
E.1l.1l Cassette Bootstrap (CBOOT) E-1
E.l1.2 Cassette Loader (CTLOAD,SYS) E-2
E.1l.3 Cassette Monitor (CAPS11.SYS) E-6
E.2 BUILDING MEMORY CONFIGURATIONS E=-11
E.2.1 Reconfiguring the Monitor E=-12
E.2.2 Reconfiguring PAL E-14
E.2.3 Reconfiguring LINK E-14
E.2.4 Reconfiguring ODT E=-15
E.2.5 Reconfiguring PIP and EDIT E-15
E.2.6 Creating a New System Cassette E-15
APPENDIX F CASSETTE STANDARDS
F.1 INTRODUCTION F=2
F.2 DEFINITIONS F=-2
F.3 THE FULL STANDARD P=-2
F.3.1 Applicability P-2
F.3.2 The Header Record F=3
F.3.3 Logical End of Tape F=5
FP.4 THE RESTRICTED STANDARD F~b
F.4,1 Applicability F=-6
F.4.2 Restrictions =8
F.4.3 Inclusions F=-6
F.5 SUPPORT FOR MULTI-VOLUME FILES F-b
APPENDIX G CAPS-11 ASSEMBLY INSTRUCTIONS
G.1l GENERAL INSTRUCTIONS G-1
G.2 ASSEMBLY COMMAND LINES G=2
G.2.,1 Kevboard Listener {KBL) G=2
G,2.2 CABLDR G=-2
G.2.3 Command String Interpreter ({(CSI) G=-3
G.2.4 CLOD11 G-3
G.2.,5 RESMON G-3
G.2.6 CBOOT G=3
G.2.7 PIP G=3
G.2.8 CSINBF G=4
G.2.9 EDIT) G~-14
G.2.10 LINK G-4
G.2.11 CSITAC G=4
G.2.12 QDT G=-5

ix

Page

G.2.13 PAL G-5

G.2.14 P8SYM (8K PAL Symbol Table) G=5

G.2.15 Pl2SYM (12K PAL Symbol Table) G-5

G.2.16 Pl65YM (16K PAL Symbol Table) G=-6

TABLES

Number Page
1-1 PDP-11/10 Control Switches 1-9
1-2 LS11 Operator Panel Functions 1-13
2- Addressing Modes 2-17

CBOOT (QCBOOT) Instructions
Permanent Device Names

CAPS~11 Default Extensions

CSI Options

Special Characters/Commands
General Locations

Special Locations

Keyboard Monitor Error Messages

wuwwciauww
W ~JNM U B W [

]
W L) W W W W
1 [}
MRNEOYO AN
b O W0

-1 EDIT Key Commands 4-4
4-2 Command Arguments 4-6
4-3 EDIT Error Messages 4=-26
5=-1 PAL Options 5=2
5-2 Mode Forms and Codes 5=-22
5=3 Instruction Operand Fields 5=-23
5-4 Trap Vectors 5=-37
5=5 Assembler Error Codes 5=47
6-1 Linker Options 6-3
6-2 Linker Non-Fatal Error Messages 6-9
6-3 Linker Fatal Error Messages 6-11
7=-1 Forms of Relocatable Expressions 7-3
7=-2 Internal Registers 7-9
7=3 Radix 50 Terminators 7-10
8-1 PIP Options g=-2
8-2 PIP Error Messages 8-5
9-1 Device Assignments 9-3
9-2 RESMON Non-Fatal Error Codes 9-5
9-3 Device Conflicts 9-21
9-4 Cassette I/0 Functions 9-24
9=5 RESMON Error Messages 9-25
E-1 Absolute Binary Load Block Format E=-3
E-2 CABLDR Switch Register Settings E-4
E-3 CABLDR Halts E-4
E-4 Monitor /H Option Responses E=13
E~5 Linker and ODT /H Qption Responses E-15
E~6 System Cassette Labeling Responses E=-16
F-1 Standard File Types F-4

1%

1]

Number

1-1

FIGURES

CAPS~1l1 Programming System
CAPS-11 Cassette

Mounting a Cassette

The PDP-11/10 Console

LA30 DECwriter (Serial)

LA30 DECwriter (Serial) Keyboard
LA30 DECwriter {Parallel)

LS11l Line Printer

LS1l Operator Panel

System Diagram

Processor Status Register

Illustration of Push and Pop Operatiomns
Nested Device Servicing

CAPS=-11 Memory Map

Mode Byte
Status Byte

CTLOAD, SYS

CAPS1l,S5YS

CAPS=-11 Loading Process
CBOOT

QCBOOT

File header Record Format

xi

LN

L8

PREFACE

This manual describes the PhP-11 Cassette Prograrming System and
provides all the information necessary for normal usage., It requires
no prior experience on a PDP-11 computer, but does assume some
exposure to assembly lanquage prograrmming and computer systems in
general. Upon receiving his svstem, the user shnuld first read
through the entire CAPS-11 manual, then reconfigqure his svstem (if
necessary) according to the instructions provided in Appendix F;
lastly, he should trv the demonstration program run in Appendix D.

Frequent reference is made to two supplerentary handbooks which the
user should also receive with his system. These are: THE rPDP-11
PERIPHERALS AND INTERFACING HAMDROOK and THE PDP-11 PROCESSOR
HANDBOOK. The latter handbook may be any one of several Processor
Handbooks, each geared to a particular PDP-1l1 Processor {11/20/15/R20,
11/45, etc.); the handbook received with a CAPS-11 System depends upon
the processor purchased.

If the user intends to write his own cassette handler or if he will
use Monitor cassette primitives, he should familiarize himself with
the TAll CASSETTE INTERFACE SYSTEM manual (DEC-11-HTACA-A~D), the TU&0
CASSETTE TAPE TRAMSPORT MAINTENANCE MANUAL (DEC-00-TUG0-DA), and the
Cassette Standard {(Appendix F of this manual).

Several different configurations are possible with the Cassette
Programming Systen. For documentation purposes, the following
configuration is assumed: PDP=-11/10 processor, LA30} DECwriter, LS11
line printer.

Documentation conventions include the following:

l. Actual computer output is used in examples wherever possible,
Yhen necessary, computer printout is underlined to
differentiate it from user responses,

2., To avoid confusion, a line feed is represented in the text as

:+ a carriage return 1is represented by J Unless

otherwvise indicated, all commands and command strings are
terminated by a carriage return.

3. Terminal, console terminal, and teleprinter are general terms
used throughout the documentation to represent any one of the
following: LA30 DECwriter, VT05 Display, LT33 or 35 Teletype.

4, Several characters used in system cormands are produced by a
conbination of two keys typed at the game time. Generally,
the combinations are SHIFT and some other key (such as SHIFT
and N to produce the uparrow character on an LT33 or 35) or
CTRL and another key {(for example, CTRL and O produces a
command which causes suppression of teleprinter output).
These key comhinations are documented as SHIFT/N, CTRL/O,
etc,, respectively,

xiii

Portions of cormand strings which are enclosed in square
brackets are optional--the user may type them or not as he
chooses without chanaing the intention of the command.

Certain keyboard variances prevail among teleprinters which
may be used as the console terminal in a CAPS=-11 System;
these concern labeling of keyboard keys and characters output
upon receipt of particular ASCII character codes. Refer to
Appendix A for a list of possible differences.

Xiv

CHAPTER 1

THE CAPS~-11 PROGRAMMIMNG SYSTEM

The PDP-11 Cassette Programming Svstem (CAPS-11) is a small
programming system for the POP=11 computer desianed around the use of
cassettes for preogram and data storage. CAPS-11 provides the user
with the camability of performing all file transfers, program
development, loadina, and storage via cassette, The system also
provides minimal support for using paper tape by allowina the user who
has paper tape programs to transfer these programs to cassette and
vice versa.

CAPS~1l provides the user with a ¥evhoard Monitor, I/0 facilities at
the Monitor 1level, and a librarv of system preoaorams, including a
machine lancguage assenbler, an editor, and a debuogino program,

Fiqure 1=1 CAPS=11 Programming System

1.1 SYSTEM CONFIGURATION

A CAPS5~-1l minimal system confiquration consists of the following
hardware and software conmponents. Optional memory and peripheral
devices may be added as desired.

1.1.1 Hardware Components

The PDP-1l1 Cassette Programming System is built around any PDP-1l1
processor with one ({(only) TAll controller, a conscle terminal (LA30
DECwriter, LT33 or LT35 Teletype, or VT(5 DECterminal), and 8K (or as
much as 28K) of memory. A line printer (LPll or LS1ll) is optional. A
high=-speed paper tape reader and punch are also optional and may be
used by FPIP.

Section 1.5 describes operational procedures for the PDP~11/10
processor, LA30 DECwriter, and LSll line printer, as these devices are
considered representative of a standard CAPS-11 System configuration.

1.1.2 Software Components

CAPS=11 software is provided on three cassettes-~two OBJ Cassettes and
a System Cassette, The OBJ Cassettes are used exclusively for
changing and building system configurations and are explained in
Appendix E. A brief description of the software package stored on the
System Cassette follows, Each program is discussed in greater detail
later in the manual.

1. Monitor = The Keyboard Monitor provides cormunication between
the user and the Cassette System executive routines by
accepting commands from the console terminal keyboard. The
commands allow the user to run system and user programs, load
and start programs using maximum memorv space, and obtain
directories of cassettes,

2. Symbolic Editor - The Editor allows the user to modify or
create source files for use as input to the Assembler. The
Editor contains powerful text manipulation commands for quick
and easy editing.

3. PAL Assembler - The Assembler (Program Assembly Language)
accepts source files in the PAL machine language and
generates binary object modules (and/or assembly listings) as
output, These object modules can then be linked, loaded and
executed,

4. Linker - The Linker converts relocatable object modules
produced by the Assembler into absolute load modules for
program loading and execufion. The Linker also produces a
load map which displays the assiqned absolute addresses.

5., ODT - The CODT (On-Line Debugging Technique) program aids the
programmer in debugging his object program by allowing him to
examine, change, and run any portion of his program on-line
using simple commands typed on the console terminal.

I

6. RESMOM - The Input/Cutput package (RFEMOMN) provides routines
for all input/output prograrmminag in the CAPS-11l System. User
programs can cormunicate with RESHMON (via IOT instructions
which wutilize RESMON) to create cassette files and perform
all console terminal and line printer I/0.

7. PIP -~ PIP (Peripheral Interchanae Program} allows the user to
transfer files from one cassette to another or to the console
terminal or line printer and to delete files from cassette,
PIP also provides minimal support for paper tape usage by
allowing programs to be transferred from cassette to the
high-speed paper tape punch and from the high-speed paper
tape reader to cassette,

1.2 WHAT IS A CAPS-11 CASSLTTE?

A CAPS-11 cassette is a magnetic tape device much like that used in a
cassette tape recorder, The tape itself and the reels it is wound on
are enclosed inside a rectancular plastic case (see Figure 1-2),
making handling, storage, and care of the cassette convenient for the
user.

On either end of one side of the cansette are tweo flexible plastic
tabs called write-protect tabs (see A in Figure 1-2). There is one
tab for each end of the tape; since data should onlv be written in one
direction, the user will need to be concerned with only the tab
specifically marked on the cassette lahel, Depending upon the
position of +this +tab the user is able to protect his tape against
accidental writing and destruction of data. When the tab is pulled in
toward the middle of the cassette so that the hole is uncovered, the
tape is write~locked; data cannot be written on it and any attempt to
do so will result in an error message. When the tab is pushed toward
the outside of the cassette so that the hole is covered, the tape is
write-enabled and data can be written onto it. Data can be read from
the cassette with the tab in either position,

The bottom of the cassette (B in Figure 1-2) provides an opening where
the magnetic tape is expnsed. The cassette is locked into position on
a cassette unit drive so that the tape comes in contact with the
read/write head through this opening.,

Both ends of the magnetic tape in a cassette consist of clear plastic
leader/trailer tape; this section of the tape is not used for
information storage purposes, but as a safequard in handling and
storing the cassette itself, Since magnetic tape is susceptable to
dust and fingerprints, a cassette should always be rewound so that the
leader/trailer tape is the only part of the tape exposed whenever the
cassette is not on a drive.

e s e RS

Fiqure 1-2 CAPS=-11 Cassette

l1.2.1 The Format of a Cassette

A cassette is formatted so that it consists of a sequence of one or
more files. Files on cassette are seguential, and each file is
preceded and followed by a file gap. (A gap in this sense is a fixed
length of blank tape.) All cassettes must start with a file gap;
information preceding the initial file gap is unreliahle.

A file consists of a semquence of one or more data recoxds geparated
from one another by a record gap. The records of any given file must
follow one another in succession, as there is no provision for record

linking. The first record of a file is called the header record and
contains information concerning the name of the £ile, its type,
length, and 8o on. {(The Cassette Standard mav be referenced in

Appendix F.) There are approximately 600 records per cassette tape.
CAPS=11 recognizes an end-of=file by the presence of either a file gap
or clear leader following a data record.

Data records in the CAPS5=11 System consist of 128 (decimal) cassette
bytes; a byte in turn consists of eight bits each representing a
binary zero or ane, Characters and numbers are stored in bytes using
the standard ASCII character codes (see Appendix A) and binary

notation,

The number of records of information on a cassctte tape may be
estimated hy the user. On the outside of the cassette case is a clear
plastic window (C in Fiqure 1-2). Along the bottom of this window 1is
a series of marks; each mark represents about 50 inches of maagnetic
tape. HKnowing that approximately 2 records fit on an inch of tape,
the wuser is able to make a reasonable gquess as to the length of tape
and number of records available for use. By simply glancing at the
width of the tape reel showing in the window, the user can tell

quickly if he is wvery close to the end. Since he is given no advance
warning of a full tape condition, the user must wvisually keep track of
the length of tape he has available. Should the tape become full
before his file transfer has completed, another cassette may be
substituted and the transfer or output operation repeated, or the /O
overflow option may be used to allow continuous transfer (see Section
3.2.4 in Chapter 3).

1.2,2 The Sentinel File

The last file on a cassette tape is called the sentinel file, This
file consists of only a 32 (decimal) byte header record and represents
the logical end-of-tape (CAPS=11 also recoqnizes clear trailer as
logical end-of=tape). A sentinel file is identified by a null
character (ASCII=000) as the first name character in the header
record. A zeroed or blank cassette tape is one consisting of only the
sentinel file.

1.3 THE SYSTEM CASSETTE

The software discussed in Section 1.1.2 is provided to the user on a
single cassette called the System Cassette. This is the cassette on
which the entire CAPS5-11 System resides and which is utilized for all
normal system functions. YYfhen in wuse, the System Cassette should
always be mounted on drive 0 (the drive on the 1left of the TAll
controller); drive 0 serves as the default device when the user fails
to specify another.

The write-protect tabh on the System Cassette should usually be in the
write~locked position so that data will not accidently be written on
it; it is suggested that the user make several copies of this cassette
as protection against loss or accidental destruction.

1.4 MOUNTING AND DISMOUNTING A CASSETTE

To mount a tape on a drive, hold the tape so that the open part of the
cassette is to the left and the £full reel is at the top. Set the top
write-protect tab to the desired position depending upon whether data
is to he written on the tape.

Open the locking bar on the cassette drive by pushing it to the right,
away from the drive (see A in Figqure 1-3), HNext hold the tape up to
the cassette drive at approximately a 45-degree angle and insert the
tape into the drive by applying a leftward pressure while
simultaneously pushing the cassette onto the drive sprockets. This
brings the tape into position against the read/write head. When the
cassette is properly mounted, the locking bar will automatically close
over the cassette back edge. Fiqure l1-3 illustrates this procedure,

Press the rewind button con the cassette unit {(see B in Figqure 1-3;
there is a rewind button for each drive), This causes the cassette to
rewind to the beqginning of its leader/trailer tape. (Pressing the
rewind button a sccond time causes the cassette to rewind to the end

of the leader/trailer tape and to the physical end-of-tape, The
cassette unit will click: this sound is almost inandible and the uaser

may not hear it unless he is listenina carefully, Normal usage
requires that the user press the rewind button only once whenever he
wishes to rewind a cassette). Even though tapes which are nnt

actively heing used on a drive should already be positioned at the
beginning, the user should develop the hahit of automatically

rewinding a cassette.

HOTE

Rewinding a cassctte is particularly
important since certain functions (such
as space reverse file and space reverse
block), initiated on a newly mounted
cassette prior to the use of any other
function, could cause the cassette
controller to function improperly. This
condition is remedied whenever the START
key is deopressed, or when a hardware
RESET instruction is executed,

When the tape has finished winding, the cassette will step moving.
The cassette is now in place and ready for transfer operations.

Figure 1-3 Mounting a Cassette

Bafore removing a cassette from a drive, the tape should always be
rewound to its beginnina by pressinag the rewind button on the cassette
unit. Rewinding a tape ensures that the clear leader/trailer tape
will be +the only tape expogsed at the open part of the cassette. To
ramove a cassette from the cassette drive, open the locking bar anhd
the cassette will pop out. When cassettes are not being activelv used
on a cassette drive, they can he stored in the small plastic boxes
providerd for this purpose by the manufacturer,

HOTE

Before using a new cassette, or prior to
usina a cassette that has just been
shipped or accidently dropped, mount the
cassette on a drive so that the Digital
label faces the inside of the wunit and
perform a revind operation. Remove the
cassette, turn it over, and perform
another rewind operation, This packs
the tape neatlv in the cassette and
places the full tape reel at the proper
tension.

1.5 COMNSOLE OPERATION

The operation of the computer console and console terminal, using the
POP=11/10 processor, LA30 DECyriter, and LS11 1line printer as
examples, follows.

1.5.1 PbDP-11/10 Prograrmer's Console

The PDP-11/10 console is designed to provide convenient manual control
of the systen. Using switches and keys located on the console,
programs and information can be directly inserted into memcry and
modified. The ©PDP-11/10 console is shown in Figure 1l-4, and each
switch and key is exnlained in the paragraphs following the figure.

[Eﬂanan digital equipment corporation - magnard. massachusett s]

NEL LOCK
— | Imnnss:mm_[nsu Vo ;
[sJuwloJuloe]slafrTelse[r 2] 0 m‘ﬂq] o

[sT«] I [T {
HRENEENEENEEEEEEREEEEEER H

Figure 1-4 The PDP~11/10 Console

Elements of the Console
The console has the following indicators and switches:

1. A R lamp which, if 1lit, indicates that the processor
is running

2. A 1l6-bit Address and Data Register display
3. A l6-bit Switch Register
4, The following control switches:

a} LOAD ADRS

b) EXaM

c) COMT

d) ENABLE/HALT

e) START

f) DEP

The programmer's console has one 16-bit recgister display used for
displaying both addresses and data. When displaying the contents of
the Address Register this display register is +tied directly to the
output of a 16-bit flip-flop reqgister called the Bus Address Register
and displays the address of any data examined or deposited. It may
also be used to display the contents of the Data Register by
displaying data in any memorv location or the results of program
execution,

The prograrmer may reference 16-hit addresses by manipulating the
Switch Register. A switch in the up position is considered to have a
1l value; a switch in the down position is considered to have a 0
value. Thus, the address indicated by the switch setting can then be
loaded into the Address Register or data can be loaded into any memory
location by wusing the appropriate control switches as follows (when
the system is executing a program, the LOAD ADRS, EXAM, and DEPosit
functions are disabled to prevent any disruption of the running
program) :

Table 1-1
PDP-11/10 Control Switches

Switch Action
LOAD ADRS Transfer the contents of the 1lé-hit
Switch Register into the Address
Reqgister.
EXAM Display in the 16-hit register

display the contents of the
location stored in the Address
Regigter.

DEP Deposit the contents of the 1l6-bit
Switch Register into the address
stored in the Address Reaister.
(This switch is actuated by raising
it,)

ENARLE /HALT Allow or prevent program execution.
To allow a program to run, the
switch must be in the EMNMAELE
position (up}. Placing the switch
in the HALT position (down) will
halt the system at the end of the
current instruction,

START Begin execution of a program (the
ENARLE /HALT switch must be in the
ENABRLL position). When the START
switch 1is depressed, it asserts a
system initialization signal and
actually starts the system when it
is released, The processor will
begin execution at the address
wvhich was last loaded using the
LOAD ADRS switch,

CON'T Allow the computer to continue
without initialization from
whatever state it is 1in after
halting.

Operating the Control Switches

After the processor has halted at the end of an instruction, it 1is
possible to examine and update the contents of locations. To examine
a specific location, set the Switch Register to correspond to the
location's address, and press LOAD ADRS; this transfers the contents
of the Switch Register into the Address Register. The location of the
address to be examined is displayed in the 1l6~hit register display.
The user can then depress EXAM, and the data in that Jlocation will
appear in the register display.

MOTE

If the user attempts to examine data
from or deposit data into a nonexistent
memory location, an error will occur and
the register display will reflect the
contents of location 000004 (the trap
location for references to nonexistent
locations). To verify that this trap
has occurred, deposit some numher other
than four in the location. If four is
still indicated, either nothinag is
assigned to that location or whatever is
assigned is not workina properly.

By depressing EXAM again, the Address Reqgister will be incremented by
two to the next word address, and the contents of this next location
may be examined.

The examine function operates such that if LOAD ADRS is depressed and
then FXAM, the 2Address Register will not be incremented. However,
successive use of the EXAM switch increrments the Address Register by
two for each depression,

If the user finds an incorrect entry in the Data PRegister, he can
change it by setting the correct data in the Switch Reqister and
raising the DEP switch. The Address Register will not increment when
this data is deposited. Therefore, by pressing the EXAM switch the
user can examine (verify) the data just deposited, Pressing TXAM a
second time will increment the register to the next word address.

When performing consecutive examines or deposits as previously
mentioned, the address will increment by two to successive word
locations. However, when examining the general-purpose registers
(R0O-R7), the system will only increrment by one.

To start a program after it is loaded into memory, set the starting
address of the program in the Switch Register and press LOAD ADRS. Be
sure that the ENABLE/HALT switch is in the ENABILE position; depress
START. The program should begin executinag as soon as the START switch
is released,

While in the halt mode, the user may execute a single instruction by
pressing CONT, When COMNT is pressed, the console momentarily passes
control to the processor, allowing it to execute one ingtruction
before regaining control. Fach time the CONT switch is pressed the
computer will execute cne instruction.

To start the program again, place the ENABLFE/HALT switch in the ENABLE
position and press CONT,

1.5.2 Operating the Console Terminal (LA30 DECwriter)

The LA30 DECwriter consists of a printer and keybonard, and is
illustrated in Figure 1-5,

1-10

deciurnitar |

Figure 1-5 LA30 DhCwriter (Serial)

The printer provides a typed copy of input and output at 30 characters
per second, maximum. Feyhoard functions such as TAPR and RETURN and
all characters, including ~, [and], have a distinct key associated
with them (unlike the LT33 and 35 kevhnards which must use key
combinations to produce these and other characters and functions).
The keyboard is illustrated in Figure 1-5.

IDNODNIEEODEEED

FEEWNEBENMO0OERREEE ©

FEAEAOEEDROOOE A

HEEOHNEENENENOODBED B
[=]

Figure 1-6 LA30 DECwriter (Serial) EKeyboard

On the back of the LA30 consnle stand is a switch which 4is wused to
turn the terminal on and off, When the switeh is raised, the READY
indicator lamp on the kevboard panel lights +to designate that the
terminal is ready for use. The DECwriter is shut off by pushing the
switch down.

Below the READY lamp is a key laheled LOCAL LINE FEED; while this key
is pressed, paper is advanced from the printer. The MNDE key next to
it should he set to LINE for all on-line operations; the baud rate 1is
generally fixed at 300 and the BAUD RBATE key should be set to this
figure. Random characters will be generated if this key is not set to
match the baud rate. The remaining keys on the keyhnard are used for
producing tvped copy and are similar to those found on a typewriter
keyboartd,

oo (151

A parallel LA30 DECwriter waries in appearence slightly from a serial
LAJ) and is pictured in Figure 1-7; the user does not have to set a

BAUD BATE or LINE key; all other operations are the same.

Piqure 1-7 LA3ID DECwriter (Parallel)

1.5.3 Operating the LS11 Line Printer

The L511 line printer may be used to output listings at a rate of 165
characters per sccond with as many as 132 characters per line. The

unit is very compact and ecan sit on a small tahle.

Figure 1-8 LS11 Line Printer

The operator panel is illustrated in Figure 1-9 and provides the user

with the fnllnwing functions:

/‘"\

Table 1-2

L1511 Operator Panel Functions

Key Action
OH/OFF Pushing the ey once turns the
printer on and lights the switch;
pushina the key a second time shuts
the printer off.
SCLECT Pushing the SELECT key enakles the

TOP OF FORM

FORMS OVERRIDE

SINGLE LIME ADVANCE

Indicator

HARDWARE ALARM

PAPER OUT

printer for use.

Pushing this key causes the paper
to advance vertically allowing
manual form control.

Pushing this key allows the user to
corplete the form being printed if
the paper needs to be replenished
{i.e., it overrides a paper-out
condition).

Pushing this key allows the user to
vertically advance the paper by one
line.

Meaning

Lights to indicate a hardware
error.

Lights to indicate an out-of-paper
or paper-handling malfunction.

SINGLE
ON/OFF ©—*"’T’ LINE
ADVANCE
5
ELECT HARDWARE
QP OF ALARM
FORM
PAPER
FORMS
OVERIDE
out
Fiqure 1-%2 LsSll Operator Panel

1-13

CHAPTER 2

PROGRAMMING THE PDP~11

The PDP-11 processor is a 16-bit, general~-purpose, parallel-logic
computer using two's complement arithmetic, Programmers can directly
address 32,768 l1l6-bit words, or 65,536 8-bit bytes. All communication
between system components 1is done on a single high-speed bus called
the UNIBUS. Standard features of the system include eight
general-purpose registers which can be used as accumulators, index
registers, or address pointers; and a multi-level automatic priority
interrupt system. A simplified block diagram of the PDP-11 System is
presented in Figure 2-1.

This chapter gives the PDP=1l programmer an overview of system
architecture, points out unique hardware features, and presents
programming concepts basic to its use. Reference should also be made

to the appropriate PDP-11 PROCESSCR HANDBOOK and the PDP-11
PERIPHERALS AND INTERFACING HANDBOOX,

2.1 GENERAL SYSTEM STRUCTURE

The architecture of a PDP-1l system and the design of its central
processor provide:

Single and double operand addressing
Full word and byte addressing

Simplified list and stack processing through auto-address
stepping (autoincrementing and autodecrementing)

Eight programmable general-purpose registers
Data manipulation directly within external device registers

Addressing of device registers using normal memory reference
instructions

Asynchronous operation of memory, processor and 1/0 devices

A hardware interrupt priority structure

{(multi-1line,

multi=level} for peripheral devices

Automatic interrupt identification without device polling

Cycle stealing direct memory access for high-speed data
transfer devices

Direct addressing of 32X words (64K bytes), including the 4X
external page

STATUS REGISTER

T

T
PRIOR T N z v C
L 1

3 2 1 v

UNIBUS P
CONTROL ARITHMETIC GENERAL
PRIORITY UNIT PURPOSE

ARBITRATION REGISTERS

N

CENTRAL PROCESSOR

UNIBUS >—

OTHER PAPER LINE
DEVICES TAPE PRINTER TERMINAL

CASSETTE | | CONSOLE | [READ/WRITE([READ/ONLY

MEMORY MEMORY

Fiqure 2-1 System Diagram

Two design features of the central processor serve to increase system
throughput:

1.,

The eight programmable general-purpcse registers within the
central processor can be used to store data and intermediate
results during the execution of a sequence of instructions,
Register-to-register addressing provides reduced execution
time for most instructions.

The ability to code two addresses within a single instruction
allows operations on data within memory. This eliminates the
need to load processor registers prior to data operations,
and greatly reduces fetch and store operations,

2=2

/‘\

2.1.1 Status Register Format

The Central Processor Status Register (PS) contains information on the
current priority of the processor, the result of previous operations,
and an indicator for detecting the execution of an instruction to be
trapped during debugging, The priority of the central processor can
be set under program contreol to any one of eight 1levels. This
information is held in bits 5, 6, and 7 of the P5. Four bits are
assigned to monitor the results of a previous instruction. These bits
are set as follows:

Bit Set

Z == if the result was zero
N -- if the result was negative

C —— if the operation resulted in a
carry from the most significant bit

V =-— if the operation resulted in an
arithmetic overflow

The T bit is used in program debugging and can be set or cleared under
program control. If this bit is set when an instruction is fetched
from memory, a processor trap will occur at the completion of the
instruction's execution,

15 8 7 5 4 3 2 1

T eem PROCESSOR
UNUSED RO e r|I Nz]|V

S 1 1 ! Il i

Flgure 2-2 Processor Status Register

2.,1.2 UNIBUS

The UNIBUS is a key component of the PDP-1l's unique architecture.
The central processor, memory, and all peripheral devices share the
same bus, This means that device registers can be addressed as
memory, and data transfers from input to output devices can by-pass
the processor, No special input/output instructions exist; all PDP=11
ingtructions are available for I/0 operations.

2,1.3 Device Interrupts
Interrupt request lines provide for device interrupts at processor

priority levels 4 through 7. Attachments of a device to a specific
line determines the device's hardware priority. Since multiple

2-3

devices can be attached to a specific line, the priority for each is
determined by position; devices closer to the central processor have
higher priority.

Peripheral device interrupts are linked to specific memory 1locations
called "interrupt vectors"™ in such a way that device polling is
eliminated. When an interrupt occurs, the interrupt vector supplies a
new Processor Status word (i.e., new contents for the Processor Status
register) and a new value for the Program Counter., The new PC value
causes execution to start at the proper handler at the priority level
indicated by the priority bits of the new Status Register,

2.1.4 Instruction Set

The instruction set (explained fully in the PDP-1l1l PROCESSOR HANDBOOK
and summarized in Appendix B of this manual) provides operations that
act upon 8-bit bytes and 1l6-bit words. Coupled with varying address
modes (Relative, Index, Immediate, Register, Autoincrement, or
Autodecrement, each of which can be deferred) more than 400 unique
instructions are available. Instruction length is variable {from one
to three 16-bit words) depending upon the addressing mode(s) used,

2.1.5 Addressing

Every byte has its own unique address. It is the dinstruction which
determines whether 8=bit bytes or l6=bit words are being referenced,
Words are addressed by their low-order (even-numbered) byte, Although
byte addressing can be to odd or even numbered addresses, referencing
words at odd numbered addresses is illegal. Bits are numbered from 0
at the lowest-order bit (2(0)) , to 15 {for a word) or 7 (for a byte)
at the highest-order bit (2(15) or 2(7)).

Most data in programs is structured in some way, often by means of
tables consisting of the data itself or of addresses which point to
the data, The PDP-1l handles common data structures with operand
addressing modes specifically designed for each kind of access. In
addition, addressing for unstructured data permits direct random
access to all of memory. The actual formats of the modes are
described in Chapter 5, concerning the Assembler.

Registers

Addressing in the PDP-1l is done through the general registers., These
registers can be specified by preceding a number in the range 0 to 7
by a % sign. However, it is common practice to assign register
identities to symbols; often RO=%0, Rl=%1l, etc. (see Chapter 5,
Section 5.4.4). Throughout this manual, reference to R0, Rl,...R7, as
well as to SP and PC, assumes such prior direct assignment. All eight
general registers are accessible to the programmer, but two of these
have additional specialized functions: R6é is the processor Stack
Pointer (SP), and R7 is the Program Counter (PC). Both are discussed
in more detail later in this chapter.

2-4

To make use of a register as an accumulator, index register, or
sequential address pointer, data needs to be transferable to and from
the register. This 1is accomplished using Register Mode, which
specifies that the instruction is to operate on the contents of the
indicated register itself, For example:

CLR R3 JCLEAR REGISTER 3 OF ITS CONTENTS

Address Pointers

The instruction can be made to interpret the register contents as the
address of the data to be operated on by specifying that Register Mode
be deferred. For example, if register 3 contains 1000, either
instruction:

CLR @#R3
CLR (RD)

will clear the address 1000. Moreover, if it is desired to perform
the instruction successively upon data at sequential addresses (i.e.,
in a table), Autoincrement Mode can be selected. This will
automatically increment the contents of the register after its use as
a pointer to the next seguential byte or word address. Note that
Autoincrement Mode {as well as Autodecrement Mode) is automatically
deferred one level to cause the register contents to function as a
pointer.

When it is specified that Autoincrement Mode be deferred, it is
deferred two levels so that the instruction interprets the
avtoincremented sequential locations as a table of addresses rather
than as a table of data, as in nondeferred Autoincrement Mode. The
instruction then operates upon the data at the addresses specified by
the table entries.

Each execution of each of the following ADD instructions increments
the value of the register contents by two to the next word address
{always an even number).

ACCUM: ADD (RBY+,(R1)+ 3IF RB INITIALLY CONTAINS 19098
. 3AND R1 INITIALLY CONTAINS 1458,
. JTHE VALUES AT LOCATIONS 1004,
. 31992, ETC.» ARE ADDED TQ THOSE AT
. JLOCATIONS 1450, 1452, ETC., AND
. JTHE RESULT STORED AT 1458, ETC.
JMP ACCUM

ACCUM: ADD @CR3)+sR2 31IF R3 INITIALLY CONTAINS 10898
. 3AND LOCATION 1990 CONTAINS 3428,
. 3THE VALUE AT LOCATION 3420 IS
. JADDED TQO THE CONTENTS OF R2 AND
. JTHE RESULT IS STORED THERE. AT
- JTHE NEXT EXECUTION OF THE
. JINSTRUCTI ON», R3=1082.
JYMP ACCUM

Byte instructions such as TSTB (R2)+ (using Autoincrement Mode)
increment the register contents by one.

In addition to this capability of incrementing a register's contents
after their use as a pointer, an address mode complementary to this
exists, Autodecrement Mode decrements the contents of the specified
register before the contents are used as a pointer. This mode, too,
can be deferred an additional level if the table contains addresses
rather than data.

Stack Operations

Both Autoincrement and Autodecrement Modes are used in stack
operations. Stacks, also called push-down or last-in-first-out lists,
are important for temporarily saving values which might otherwise be
altered. Their characteristic is that the most recent piece of data
saved is the first to be restored. The PDP~1ll processor makes use of
stack structure to save and restore the state of the machine on
interrupts, traps, and subroutines. To save, data is "pushed” onto a
stack by autodecrementing the contents of a register (e.g., MOV
R3,-(R6)); to restore, data is *popped® from a stack by
autoincrementing (e.g., MOV (R6)+,R3). The register being used as the
Stack Pointer always points to the top word of the stack.

EO 3]
MEMORY €0
1. AN EMPTY 2. PUSHING A 3. PUSHING ANOTHER
STACK DATUM ONTO DATUM ONTO THE
THE STACK STACK
E2 E2 /E-'i E3
El £l E1 El
E0 EO EO EO
4. ANOTHER 5. POP 6. PUSH 7 POP
PUSH

Figure 2=3 1Illustration of Push and Pop Operations

Random Access of Tables

Direct access to an entry in the middle of a stack, or in any kind of
table, is accomplished through Index Mode. The contents of a register
are added to a base (fetched from the word or second word following
the instruction) to calculate an address. With this facility a
fixed-order element of several tables, or several elements of a single
table, may be accessed.

1

——

Table of Words Addresses if R3
of entries contains: Operand code is:

TABLL: +TBL1 0 h
«TBL1+2 2
+TBL1+4 4 TBL1{R3) in
+TBL1+6 6 each case
+~TBL1+10 10)

when deferred Index Mode is specified (i.e., @TBL1(R3)), the
calculated address contains a pointer to the data, rather than
containing the data itself, Byte tables are discussed in Section 2.2,

Address Modes

Addressing modes may be summarized as follows and are discussed in
detail in Chapter 5.

Table 2~1
Addressing Modes
Non-deferred Modes
Assembler
Syntax Mode Typical Use
Rn Register Accumulator
{Rn)+ Autoincrement Sequential pointer to data in
a table; popping data off a
stack
- (Rn) Autodecrement Sequential pointer to data in
a table; pushing data on a
stack
A(Rn) Index Random access to stack or
table entry
Deferred Modes
Asgsembler
Syntax Mode Typical Use
@Rn or (Rn) Deferred Pointer to an address
Register

{Continued on next page)

2=7

Table 2-1 (Cont.)
Addressing Modes

Assembler
Syntax Mode Typical Use
@(Rn)+ Deferred Sequential pointer to ad-
Autoincrement dresses in a table; popping
address pointers off a stack
@8- (Rn) Deferred Sequential pointer to ad-
Autodecrement dresses in a table; pushing
address pointers on a stack
@A (Rn) Deferred Index Random access to table of
address pointers

Accessing Unstructured Data

Addressing of unstructured data becomes greatly facilitated through
the use of the Program Counter (R7) as the specified register in these
modes. This is particularly true of Autoincrement and Index Modes,
which are mentioned below, but discugssed more fully in Chapter 5.

Autoincrement Mode using R7 is the way immediate data is assembled.
This mode causes the operand itself to be fetched from the word (or
second word) following the instruction., It is designated by preceding
a numeric or symbolic value with #, and is known as Immediate Mode.
The instruction:

ADD #5@,R3

causes the value 50(octal) to be added to the contents of register 3.
If the # is preceded by @, the immediate data is interpreted as an
absolute address; i.e., an address that remains constant no matter
where in memory the assembled instruction is executed,

Index Mode using R7 is the normal way memory addresses are assembled.
This is relative addressing because the number of byte locations
between the Program Counter (which contains the address of the current
word+2) and the data referenced (destination address minus PC) is
placed in the word (or second word} following the instruction. It 1is
this value that is indexed by R7-~the Program Counter--as follows:

(Destination-PC)+PC=Destination

Relative Mode is designated by specifying a memory location either
numerically or symbolically (e.g., TST 100 or TST A). If a memory
address specification is preceded by @, it is in deferred Relative
Mode and the contents of the location are interpreted by the
instruction as a pointer to the address of the data,

———

2.2 INSTRUCTION CAPABILITY

The twelve ways of specifying an operand demonstrate the flexibility
of the PDP-1l1 in accessing data according to how it is structured, and
even 1if it is not structured. Each instruction adds to this
versatility by acting on an operand in a way particularly suited to
its task. For example, the task of adding, moving, or comparing
implies the use of two operands in any of the twelve addressing forms;
whereas the task of clearing, testing, or negating implies only one
operand, Examples:

ADD ¥#12,GROUP(R2)
MOV MEMI1,MEM2
CMP (RAY+,VALUE
CLR R3

TST SUM

NEG 8-(R53)

Some instructions have counterparts which operate on byte data rather
than on full words. These byte instructions are easily recognized by
the suffixing of the letter B to the word instruction, MOV is one
such word instruction; e.g., MOVB $12,GROUP(R2} would move an 8-bit
value of 12{octal) to the 8=bit byte at the address specified. One
implication of byte instructions is that when using Autoincrement or
Autodecrement Mode, a table of bytes is being scanned. The
Autoincrement or Autodecrement therefore goes by one in byte
instructions, rather than by two. However, because of their
specialized processor functions, R6 and R7 in these modes always
increment or decrement by two.

Forms other than single or double operand instructions include operate
instructions such as HALT and RESET which take no operands, branch
instructions which transfer program control under specified conditions
{see Chapter 5), subroutine calls and returns, and trap instructions
(see Appendix B for the complete instruction set),

2.3 PROCESSOR USE OF STACKS

Because of the nature of last=in-first-out data structures, the same
stack can be used to nest multiple levels of interrupts, traps, and
subroutines (see Figure 2-4),

2.3.1 Subroutines

In subroutine calls (JSR Register,Destination) the contents of the
specified register are saved on the stack (the processor always uses
R6 as its Stack Pointer) and the value of the PC (return address
following subroutine execution) becomes the new value of the register.
This allows any arguments following the call to bhe referenced via the
register. The command RTS Register causes the return from the
subroutine by moving the register value into the PC, It then pops the
saved register contents back into the register. {Return from a
subroutine is made through the same register that was used in its
call.)

29

2.3.2 Interrupts

When the processor acknowledges a device interrupt request, the device
sends an interrupt wvector address to the processor., The processor
then pushes the current Status (PS) and PC onto the stack and picks up
a new PS and PC (the interrupt vector) from the address specified by
the device. Another acknowledged interrupt before dismissal will
cause the PS and PC of the running device service routine to be pushed
onto the stack and the address and status of the new service routine
to be loaded into the PC and PS, A process can be resumed by popping
the o0ld PC and PS from the stack into the current PC and PS with the
ReTurn from Interrupt (RTI) instruction.

2.3.3 Traps

Traps are processor generated interrupts. Error conditions, certain
instructions, and the completion of an instruction fetched while the T
bit was set all cause traps. As in interrupts, the current PC and
Status are saved on the stack and a new PC and Status are loaded from
the appropriate trap vector. The instruction RTI provides for a
return from an interrupt or trap by popping the top two words of the
stack back into the PC and PS,

s} 1 PROCESS O 15 [+ 4. PROCESS |
RUNNING STACK INTERRUPTED
400 POINTER (S7) 400 WITH PCzPC)
POINTING TQ AND STATUS#P5|
LOCATION PO PROCESS 1S
STARTED.
5P =P
PROGRAM & — PCI
P51
T1E1
TEO
o] 2. INTERRUPT STOPS
PROCESS 0 WITH PCO
400 PCzPCy AND
STATUS =PSg P50
TART PR 51
§ OCES PO | PROGRAM
5P—= PCQ
D 5. (ROCESS 2
PSQ COMPLETES WITH
PO 450 AN AT] INSTRUCTION
PROGRAM {DISMISSES
~ INTERRUFT)
PC 15 RESET TO PCy
AND STATUS 15
P —a= TE1 RESET TO P5)

PROCESS 1 AESUMES

TED
0 3 PROCESS | USES

STACK PCR PCO
400 APORART
STORAGE (B, TEY) P50
PD| PROGRAM
SP—m TE1
D & PROCESS 1 RELEASES
TEQ THE
400 STORAGE HOLDING
PCO TEO AND TE!
314
PQ
PROGRAM sP—e| PCO
P30
po | PROGRAM
+] 7 PROCESS | COMAETES

ITS OPERATION WITH
400 RTL

PC IS RESET TO
AND STATYS IS RESET
10 Py AROCESS

S Prvovry 0 RESUMES

Figure 2-4 Nested Device Servicing

2-10

CHAPTER 3

USING THE CAPS-11 MONITOR

The Cassette Programming System is stored on a single cassette, called
the System Cassette, which contains all the programs necessary for
loading the Keyboard Monitor into memory and creating and running
system and wuser programs. {(The System Cassette supplied to the user
is confiqured for an BK system, Refer to Appendix E for instructions
concerning building a System Cassette for any size configuration.) The
directory of the System Cassette is as follows:

CTLOAD SYS
CAPS1! S8K
PIP SRU
EDIT SLG
LINK SRU
oDT SLG
PAL SRU
DEMO PAL

The Monitor is loaded into memory from the System Cassette by means of
a short bootstrap program, Once in memory, the Monitor accepts
commands from the console terminal keyboard which allow the user to
run system and user programs, and create, assemble, load, execute, and
debug programs, utilizing cassettes for all data storage,

3.1 LOADING INSTRUCTIONS

The first operation in using the CAPS-1l System involves loading the
Monitor into memory from the System Cassette. The loading process may
he accomplished by following steps 1 through 4 below:

1. Ensure that the computer and console terminal are
on-line.

2. Place the System Cassette (write-locked to protect data)
onto cassette drive 0 (facing the computer, drive 0 is
to the left of the cassette unit).

3. Press and raise the HALT key (leaving it in the ENABLE
position).

Load and start the system Dbootstrap loader {called
CBOOT), This can be done in one of two ways:

a)

b)

If the system has a hardware bootstrap, set 173300
in the 8Switch Register, press LOAD ADRS and START
(part b may be ignored).

If no hardware bootstrap is availahle, CBOOT must be
manually loaded and started by the user. Two
versions of CBOOT are provided. The standard
version is the version used in the hardware
bootstrap and consists of the 28 words listed in
Tahle 3-1. A complete listing and more information
concerning CBOOT is provided in Appendix E,

A shorter (20 word) version called QCBOOT may
optionally be loaded by the user, This version does
not provide some of the error checking and handling
which the 1longer CBOOT does, but allows a faster
means of manually booting the system, A conmplete
listing of QCBROT is also provided in Appendix E;
the binary instructions are listed in the following
table:

Tahle 3-1
CBOOT (QCBOOT) Instructions
CBDOT QCBOOT
Location Contents Contents
001000 012700 012700
001002 177500 177500
001004 005010 005010
001006 010701 010701
001010 062701 062701
001012 goo052 000034
001014 012702 112102
001016 000375 112110
001020 112103 032710
001022 112110 100240
001024 100413 001775
001026 130310 100001
001030 001776 005007
001032 105202 005202
001034 100772 100770
001036 116012 116012
001040 000002 000002
001042 120337 000766
001044 000000 017775
001046 001767 002415
001050 000000
001052 000755
001054 005710
0014056 100774
001060 005007
001062 017640
001064 002415
001066 112024

3-2

After the bootstrap has been manually lcocaded (using
the Switch Register, LOAD ADRS, and DEP keys), set
001000 in the switches, press LOAD ADRS and START,

At this point the RUN lamp should be 1lit and the System Cassette
should begin to move. The bootstrap loader {CBOOT or QCBOOT) calls
the first program on the System Cassette (CTLOAD.SYS) which in turn
loads the Keyboard Monitor (CAPS11.5YS) into memory. If an error
occurs during the loading process {an error may be caused by the
cassette being improperly mounted, by a missing file on the tape, or
by the occurrence of an I/0 error) no error message will inform the
user, Instead, the System Cassette may stop moving and the computer
will halt. If this condition occurs and the reason for the halt is
not immediately apparent, consult Appendix E, which provides more
information concerning errors during the loading process.

Once the Monitor has been loaded, the System Cassette stops moving and
a dot is typed at the left margin of the console terminal page. A
Monitor identification line may also be typed; however, this line will
be output only if the Monitor is being loaded for the first time, or
if a previously loaded CAPS-11 system has been completely deleted from
memory. The total time involved in the loading process (i.e., from
the bootstrap initialization on a rewound cassette to the appearance
of the dot) is approximately 30 seconds. The dot instructs the user
that the Monitor is now in memory and ready to accept input commands.

3.2 SYSTEM GONVENTIONS

File naming procedures, special character commands, error formats, and
other conventions which are standard for the CAPS-11 System are
presented next. The user should be familiar with these conventions
before using the system,

3.2,1 File Formats

The Cassette Programming System makes use of two types of file
formats~=ASCII and binary.

Files in ASCII format conform to the American National Standard Code
for Information Interchange in which alphanumeric characters are
represented by an 8-bit code. A chart containing ASCII character
codes is provided in Appendix A. Files in ASCIT format are generally
those created using the Editor.

Files in binary format consist of 8-bit bytes representing data and
PDP-11 machine language code, Binary files contain addresses and
machine instructions and may be read directly into memory for
immediate execution, System programs and object programs the user has
created using the Assembler and Linker are in binary format.

3.2.2 Input/Output Devices

There are four categories of input/output devices 1in the CAPS-11
System; these are the console terminal keyboard and printer, cassette
drives 0 and 1, an optional line printer, and an optional high-speed
paper tape reader and punch (which may be used only by PIP as
discussed in chapter 8), Each device is referenced by means of a
standard permanent device name which is recognized by the CAPS-11
System when encountered in an X/0 command string. These names are
listed in Table 3-2:

Table 3-2
Permanent Device Names

Name Device

CT0 (or 0) Cassette Drive 0
CTl (or 1) Cassette Drive 1

PP High-speed Paper Tape
Punch

PR High~-speed Paper Tape
Reader

LP Line Printer (LPll or
LS11)

TT Console Terminal (LT33
or LT35 Teletype, VTOS
Display, or LA30
DECwriter)

3.2,3 Filenames and Extensions

System and user files are referenced symbolically by a name of as many
as six alphabetic characters (A-Z) or digits (0-9), followed by a
period and an optional extension of from 1 to 3 alphabetic c¢haracters
or digits; the extension is generally used as an aid in remembering
the format of a file. The following are examples of legal and illegal
filenames:

Legal Illegal
1TYPE, PAL 25TOW, PAL
ABCDEF.OBJ FO RM
DATA. PROGRAM. DAT
PRO.2]1R LOAD, 34AN

FILE (extension assumed)

Although the user may call his files by any mnemonic filename and
extension he chooses, in most cases, he will want to conform to the
standard extensions established for CAPS-11 and listed in Table 3=3,
There are two reasons why the standard extensions should be used:

———

a)

b)

If an extension is not specified for an input file (for
example, FILE in the preceding 1list of legal
filenames), certain system pPrograms and Monitor
commands will perform a search for the filename and an
assumed default extension; the Monitor RUN command is
one example of a system routine which assumes an
extension if no other is indicated.

If an extension is not specified for an output file,
some system programs will append standard extensions
during the output operation; for example, the Assembler
will append the extension ,LST for the output listing
file unless the user designates another,

Standard extensions sawve the user time in typing the command line
consistency in filenaming procedures; the following table

provide

lists the default extensions; greater detail is presented in
individual chapters.

Table 3=3
CAPS~=11 Default Extensions

Extension Meaning
.LDA Linker binary output load module
«LST Assembler listing output file
« MAP Linker load map output
.0OBJ Relocatable binary object module

(Assembler output, Linker input)

« PAL Assembler source file (Editor input and
output, Assembler input)

NOTE

The next three extensions are
default extensions for the
Monitor RUN comrmand. See
Section 3.3.1 for details.

+SLO Absolute binary object file (default
extension for RUN command, causing an
automatic load and overlay of the
Monitor as necessary up to CABLDR)

« SLG Absolute binary object file (default
extension for RUN command, causing an
automatic Load and Go)

+«SRU Absolute binary object file {normal
default extension for the RUN command)

.8YS CAPS=-11 system file (i.e., CTLOAD.SYS,
CAPS11.5YS; the extension is reserved

for these two files}

and

the

3.2.4 Entering I/0 Information

As soon as the Monitor has been completely loaded into memory, it
responds by printing a dot (.) at the left margin of the console
terminal page indicating that it is ready to accept a command from the
user, A part of the Monitor called the Keyboard Listener (KBL) is
responsible for printing the dot. There are eight commands which the
user may type in response to this dot: DATE, ZER0O, SENTINEL,
DIRECTORY, RUN, LOAD, START, and VERSION. The KBL interprets these
commands and in most cases executes them; however, since the Monitor
RUN command requires more information from the user, another important
part of the Monitor--the Command String Interpreter--must be involved.

The Caommand String Interpreter (CSI) allows the user to enter command
strings which provide necessary information concerning input and
output files and devices, file formats to be used in I/0 operations,
and any other important information needed for the I/0 process. The
CSI prints an asterisk (*} at the left margin of the console terminal
page as soon as it is ready to accept this information.

NOTE

The user may enter his I/0 command
string as soon as the asterisk is
printed even though program loading (as
a result of using the RUN command) may
be occurring at the same time. The user
should be careful not to manually rewind
or dismount the System Cassette while
loading is continuing, After loading is
complete, the System Cassette will
automatically rewind.

The command string which the user enters in response to the asterisk
contains all input and output specifications in the following general
format:

*DEV:0UTPUT ,EXT/OPT=DEV : INPUT .EXT /OPT

DEV represents one of the permanent device names listed in Table 3-1,
If a cassette is the device, only the drive numbher need be entered
separated from the filename by a colon, OUTPUT.EXT and INPUT.EXT
represent filenames and extensions, as explained in Section 3.2.3,
/OPT represents an option letter from the list described briefly in
Table 3-4, Options are separated from the rest of the command line
and from one another by a slash character (/) and are indicated in the
command string only when the wuser wishes the associated action to
occur. Option usage varies according to the program being used; refer
to individual chapters to learn which options are used by each CAPS-11
system program.

Table 3-4
CSI Options

Meaning

/D
/F

/P

/S

/T

/X

/2

ASCII; the file type is set to ASCII (used during
a PIP file transfer).

Bottom; links the user program with its lowest
location at n (used by Linker).

Continuation; indicates that the cormand string is
to be broken into one or more lines. The /C
option mast be used at the end of each 1line that
is to be continued.

Delete; indicates file deletion (used by PIP}.

Forward; indicates that the cassette need not be
rewound before searching for the file (i.e., the
filename preceding the option 1is in a forward
direction in regard to the tape's current position
on the drive}. The RUN command assumes this
option.

High; links the wuser program with its highest
location at n (used by the Linker).

Overflow; used after an output filename,
indicating that the file preceding the option is
to be created and used only for output overflow
conditions. If no filename is indicated, the
overflow file will be created under the same name
as the most recently opened output file,

Prompt; requests that the system prompt the user
to change cassettes on an indicated drive before
attempting to access a file, The system prints:

#?

where # represents the number of the appropriate
drive.

Several; used after a Linker input filename to
indicate that this filename contains more than one
input object module. (Several object modules may
be combined under one filename using PIP,)

Transfer address; used after a Linker input
filename (object module) to indicate that the
transfer addreas of this object module is to be
used as the transfer address of the final load
module.

Extended; suppresses extended binary output in an
assembly listing (used by PAL).

Zero; causes all output cassettes indicated in the
command line to be zeroed, or completely deleted
of files (used by PIP}.

The general form of the command line as shown previously consisted of
only one input and one output file indicated on a single line.
However, from 0 to an unlimited number of filenames may be entered
depending upon the system program in use, and the command string can
be broken into two or more lines by using the special option character
/C. A separator always divides the input specifications from the
output specifications and may be any one of the following:

equal sign
< left angle bracket
< back arrow

The user may omit indicating a permanent device name entirely in a
command string if he is aware of how his command line will be
interpreted by the Monitor. Consider the following command string:

*CTOtFIRST. PAL,LP:=CT1: TASK+ 1, CT1: TASK. 2, CTB: TAS{ . 3/C
2CTO:TASA. 4

This command string contains two 'lists' of device designations--the
output 'list' contains CTO and LP; the input 'list' is made up of CTl,
CTl, CTO, and CT0. Unless the user designates otherwise, the Monitor
will always assume that the first device in any 'list' (input or
output) 1is cassette drive 0; all immediately following default
{unnamed) devices in this 'list' will also refer to drive 0. This
continues until the wuser specifies a different device using a
permanent device name from Tahle 3-2. Thereafter, all immediate
default devices will reflect the most recent user-indicated device.
If the first device in a 'list' is not drive 0 (i.e., the user has
specified another permanent device name as in the input 'list' above},
all default devices will reflect this user-indicated device until a
different device is specified, and so on. Thus, the above command
line could have been written:

:Fl RST.PALsLP:=1:TASK. 1, TASK. 2, @ TASK . 3, TASA . 4

The Command String Interpreter scans the user's command string and
constructs a table containing all the input and output information
which has been entered. Details concerning this table and more
information regarding both the KBL and CSI is provided later in the
chapter and in Appendix E,

3.2.5 Special Characters and Cormands

The following special characters and cormmands can be used by the
programmer to control execution and correct command lines; these
commands may be used while under control of any of the system
programs,

Table 3-5
Special Characters/Commands

Character/Command Meaning

CTRL/C Control can be returned to the Keyboard
Monitor while running any of the system
programs by typing a CTRL/C (produced by
holding down the CTRL key and simultaneously
pressing the C Kkey). A CTRL/C causes a
complete rebootstrap (if necessary) of the
Keyboard Monitcr by reading the appropriate
files from the System Cassette on drive 0.
The system prints:

1C?

which prompts the user to mount the System
Cassette on drive 0 {in the event that it may
not already be mounted); typing any character
will continue execution of the reboot. 1If
the Monitor is still intact in memory, no
reboot 1is necessary and typing a CTRL/C will
echo only *C and cause an immediate return to
the KBL. When it is ready to accept input,
the KBL types a dot at the left margin of the
teleprinter page.

CTRL/Q Teleprinter output can be surpressed by
typing a CTRL/0 {produced by holding down the
CTRL key and simultaneously pressing the O
key). This allows execution of the program
to continue but stops all conscle printout.
Typing a second CTRL/O will resume printout
again, Unless output is extremely lengthy,
or unless the program is waiting for input
from the user, processing of a program after
an initial CTRL/0 has been typed will usually
be completed before the user is able to type
a second CTRL/0O. Printout will autcmatically
resume when control is returned to the
Keyboard Listener (indicated by a dot at the
left margin).

NOTE

CTRL/0 does not suppress line
Printer output, and does not
prevent certain important error
messages from printing on the
console terminal.

CTRL/O is treated samewhat
differently when using the CAPS-1l
Linker to produce a load map.
Refer to Chapter 6 for details,

(Continued on next page)

Table 3-5 (Cont.}
Special Characters/Commands

Character/Command Meaning

CTRL/P A CTRL/P (produced by typing the CTRL and P
keys simultaneously) during the initiating of
a Monitor command echoes tP and causes
control to return to the Keyboard Listener,
indicated by a dot at the left margin,

A CTRL/P typed during the initiating of a CSI
command string echoes +P and causes a
re-initialization of the Command String
Interpreter, indicated by an asterisk at the
left margin.

During execution of a user program, a restart
address may have been specified by the user
within his program so that a CTRL/P will
cause a restart of that program rather than
of the Monitor. Refer to the CTRL/P RESTART
IOT (Chapter 9, Section 9.4.1) for details.

CTRL/U A line currently being entered (whether as
part of a command or as text) may be ignored
by typing a CTRL/U (produced by typing the
CTRL and U keys simultaneously}. A tU is
echoed followed by a carriage return/line
feed (when using the Editor, an asterisk is
also printed); the user may enter a new line.
(This command produces the same results as
typing RUBOUTs back to the beginning of a
line.}

RUBOUT A RUBOUT (produced by pressing the RUBOUT
key) causes a deletion of the most recently
typed character and echoes the deleted
character on the terminal. Each successive
RUBOUT deletes and echoes one more character
{fup to the preceding carriage return/line
feed, after which successive RUBOUTs will not
echo nor delete any characters).

3.2.6 Error Message Format

Error messages are printed whenever the Keyboard Monitor is used
incorrectly, or when an I/0 error occurs while using Monitor commands
and system programs, or upon occurrence of a hardware error, The
appropriate message is printed on the console terminal at the time the
error occurs; the message is preceeded by either a guestion mark or a
percent sign to indicate one of the following:

3-10

% Fatal error; execution of the command cannot
be continued further and control returns to
the KBL, A dot is printed at the left margin
of the teleprinter page when the Monitor is
ready to accept another command.

"

Non-fatal error; if possible, execution of
the command will continue after the error
message is printed on the console terminal;
if further execution is not possible, control
will return to the CSI and the user may enter
another command string.

A list of Monitor error messages is provided in Section 3.7.

3.3 KEYBOARD MONITOR COMMANDS

There are eight Keyboard Monitor commands which may be typed in
response to the dot printed by the Kevboard Listener; they are entered
when the RETURN key is pressed. Any error made while utilizing these
commands will result in a message informing the user. After
occurrence of an error, control returns to the KBL and the command
must be retyped. Monitor commands generally require only a single
command line which specifies the device, filename(s), and switch{es)
in the following format:

« COMMAND/SW DEV:FILENA,EXT

COMMAND represents one of the eight Monitor commands. SW represents a
switch-~an alphabetic character separated from the cormand and from
another switch character by a slash (/); switches are similar to the
CsI options discussed in Section 3.2.4, but perform different
functions and are wvalid only when used with Monitor commands; switches
are discussed individually in sections concerning the commands with
which they are used. The device (DEV), if specified, will always be a
cassette, so the user may enter only the drive number rather than the
entire permanent device name if he wishes, With the exception of the
ZERO command, drive 0 is always assumed, so the user may omit the
device specification entirely if CTO0 is the device. FILENA.EXT
represents the file being accessed; the filename must be separated
from the drive number (if indicated) by a colon.

Throughout this section, optional entries in the command 1line are
enclosed in square brackets.

3.3.1 RUN Command
The RUN command is of the form:
«R{UN] [[CT]#:]FILENA[.EXT]
The RUN command instructs the Monitor to load and execute the file

specified in the command line; this file must be in absolute binary
format. If the user omits the extension (as is generally the case

3-11

when calling system programs), the Monitor will search the indicated
cassette for the file as the user has designated it in the command
line,. However, it assumes that it will find the filename followed by
one of three extensions: .SI0O, .SLG, or .SRU; the first file found
which has the indicated filename and one of these extensions willte
accessed,

The extensions used by the RUN command are interpreted as follows:

-.SLO The file is an ahsolute binary object file and
will be loaded into memory overlaying as necessary
all parts of the Monitor as far as CARLDR (see
Section 3.5):; after the file is loaded, it is
automatically started. RUNning a file with this
extension is identical to a LOAD/O of the file.
Presently, no system programs use the . SLO
extension; however, it is available for future
system expansion and for general use,

. SLG The file is an absolute binary object file and
will be loaded into memory to the bottom location
of CLODll (see Section 3.5). Execution is
automatic. Systenm programs which use this
extension are ERIT.SLG and ODT,SLG., Using this
extension is the same as using the /G switch with
the LOAD command.

.SRU The file is an absolute binary object file and
will be loaded into memory and automatically
started., This is the normal default extension for
the RUN command and is used by the following
system programs: PIP,.SRU, PAL.SRU, LINK.SRU.
Using this extension is similar to using the LOAD
command except that execution is automatic and
more I/0 information must be provided by the user,
thus involving the CSI.

For example, assume the directory of cassette drive 1 is as follows:

TABLE 1

FORM SRU
FIELD PAL
FORM 5LG

If the user types:

<R 1: FORM

The cassette on drive 1 will be searched for the first file consisting
of the name FORM and one of the three extensions; in this case the
first file meeting these requirements is FORM.SRU. This file is
loaded into memory and executed. After the file is loaded, the
cassette is automatically rewound; thus, if the user wishes to access
the file FORM,SLG, he must either delete the file FORM.SRU from the
cassette (see Chapter 8), or specify the entire filename in the
command line as follows:

+R 1:FORM.SLG

If a user program with no specified transfer address is loaded via
RUN, the fatal error message:

AND START ADDR

will be printed. If the file indicated in the command line is not
present on the cassette, the fatal error message:

ZFILE NOT FND

will be printed.

3.3.2 LOAD Command

The LOAD command is used to load an absolute binary file into memory
and takes the following form:

.L[OAD] [/SW] [I[CT]#:]FILENA.EXT

/SW represents either a /0 or /G switch. If neither switch is
indicated in the caommand line, the command allows loading only to the
bottom location of the KBL without error {see Figure 3-1 in Section
3.4). At the completion of the load, the KBL prints a dot to indicate
that it is still intact and ready to receive another Monitor command
{typically either START or another LOAD),

LOAD used with a /G switch directs a program 1load to the bottom
location of CLODll, and then initiates a 'GO' (START) at the specified
transfer address, If this is absent, the fatal error message:

ZNO START ADDR
tCc?

will be printed. Since the KBL and CSI are 'marked' (or assumed} as
being overwritten when the /G switch is used, the Monitor must be
rebooted from the System Cassette on drive 0.

LOAD used with a /0O switch allows a program to be loaded even if its
size requires overwriting the entire Monitor. Such a program must
handle its own I/0 and other functions since no part of the Monitor
may be available to do this. This type of program is started at its
transfer address; if none has been indicated, CABLDR will halt and
expect user console action (information concerning a CABLDR halt is
provided in Appendix E).

Section 3.5 provides greater detail concerning the loading process
when RUN or any form of the LOAD command is used.

3.3.3 START Command
The START command is of the forms:

«ST[ART] [nnnnnn}

and is used to start a program which has been loaded into memory using
the LOAD command without a switch, nnnnnn is an optional absolute
starting address for the program, and if indicated, will cause program
control to be transferred to this address. If not indicated, the last
specified transfer address of the program(s) loaded will be used. If
no transfer address exists, an error messade is printed and control
returns to the KBL.

For example, the program LDT,SLG on cassette drive 1 is loaded and
started at location 1000 as follows:

+LOAD 1:LDT.SLG

. ST 1000

3.3.4 DATE Command
The DATE command is of the form:
.DA[TE] dd-mmm-yy

where dd, mmm, and yy represent the current day, month, and year as
entered by the user. One- or two-digit numbers in the range 1-31 are
entered in the day portion; the first 3 characters of the month are
entered in the month portion of the command: digits in the range 0-99
are entered in the year portion, The Keyboard Monitor checks for the
entry of a number which 1is outside the ranges allowed and for
characters which are not the first three characters of one of the
twelve months; if any error is found, a message is printed and a blank
date is produced (i.e., the location in which the date is stored is
padded with nulls and dashes are printed during directory listings).

The current date as entered by the user will appear in directory
listings (see Section 3.3.5), in Linker load maps, and in PAL assembly
listings, and the date of creation of all new files will also be in-
cluded. If the date command is not used, directory listings will con-
tain only filenames, extensions, and previous creation dates.

When the user enters a date, it is stored in a part of memory that is
not 1likely to be overwritten (and therefore destroyed) by the user or
by the CAPS-11 System. The user should update his system from day to
day to prevent wrong dates from being assigned to files, Very
infrequently (if ever) that part of memorv holding the date may be
overwritten 1in such a way as to cause random characters to be printed
in place of the date, The user need only type in the current date
using the DATE command to correct this condition.

3.3.5 DIRECTORY Command
The DIRectory command is of the form:
«DI[R][/F] [ICT]#:]

and causes a directorv listing of the cassette on the indicated drive
to be output on the console terminal. For example:

+DIR CT1:
@3- APR-73

FAD SLG 83-APR-73
BA T 27-MAR-73

The /F switch is optional; if used, it causes a "fast" listing to be
produced by omitting current and creation dates and listing only
filenames and extensions. For example:

DIR/F 11

ABC SLG
*EMPTY
PRO LDA

If a file has been deleted from a cassette using PIP (see Chapter B8)
its filename and extension will be replaced by the header *EMPTY in
the directory listing. To delete *EMPTY files from cassettes, the
user must first transfer all needed files to another cassette (using
PIP) and then zero the first cassette, or use the SENTINEL cormmand,
explained in Section 3,3.7,

If no sentinel file is present on the cassette, the error message:
ZINO SENTINEL FILE

will be printed following the directory listing, (This condition
occurs when an open file on cassette has not been properly closed.)
The user should write a sentinel file on the cassette using the
SENTINEL command, While files may be read from a cassette which
contains no sentinel file, thevy may not be written.

3.3.6 ZERO Command
The ZERQO command is of the form:
L.Z[ERO] [CT]#:

and causes the indicated cassette to be zeroed, or completely deleted
of files; the sentinel file is written at the beginning of the
cassette so that the entire tape is availabhle for use, A cassette
nurber must always Dbe indicated as the ZERO command does not assume
drive 0.

All new cassettes should be zeroed before they are first used. This
ensures that a sentinel file is present at the beginning of the tape.

3.3.7 SENTINEL Command

The SENTINEL command allows the user to 'zero' part of a cassette by
deleting all files following a g¢given filename, The form of the
command is:

.SE[NTINEL] [[CT]#:]FILENA,EX

This command causes the sentinel file to be written immediately
following FILENA.EXT, thereby effectively 'zeroing' the remainder of
the cassette., For example, assume the directory of the cassette on
unit drive 1 is:

S1ZE LST
*EMPTY

BLANK SLG
FORTY DAT

and the user types:
+3E 18 SIZELLST

The directory of the cassette will now read:

SIZE LST

Cassette drive 0 is assumed if no drive number is indicated in the
command line.

3.3.8 VERSION Command

The VERSION command is used to find out the version number of the
Monitor currently in use, Typing:

«V[ERSION]

instructs the Monitor to respond with the Moniter identification,
version number, and current date. For example:

Y
CAPS-11 vpl1-82
27-AUG-73

Version 01-02 is currently in use. As new versions of the Monitor are
released, this numbher will be updated accordingly. Any communications
with Digital Equipment Corporation concerning the CAPS-11 System
should indicate the wversion number of the Monitor currently in use.

3.4 KEYBOARD MONITOR SECTIONS

That part of the CAPS~11 System termed the Keyboard Monitor (and
stored on the System Cassette as CAPS11.8YS) is actually composed of
several subprograms (such as CSI and KBL} which are responsible for
various stages of system and user interaction. As already mentioned,
the first step in using the CaAPS-11 System is to bring these
subprograms into memory and begin their execution. The user begins
the loading process when he starts the bootstrap loader (CBOOT). When
the Monitor has been completely loaded and 1is ready for use, it
resides in memory as shown in Fiqure 3-1:

C BODT X7710
RESMON
CLODI
Key lor X
CSI _:I(
3
5
7
CABLDR 13
|3
KBL
~[x-1] 1500
FREE
MEMORY
. *SYSCOM OCCURIES LOCATIONS
264 40-57: DEVICE INTERRUPT VECTORS
ARE CONTAINED IN NON-5YSCOM
57 LOCATIONS 0-60, AND CERTAIN
SYSCOM 40 OTHER LOCATIONS FROM 60 - 264.
0

Figure 3-1 CAPS-11 Memory Map

Each of the Monitor subsections will be discussed briefly. A detailed
description of the Monitor loading process, information concerning
loader formats, and Switch Register settings for use with Monitor
loads and error halts may be referenced in Appendix E,.

3.4.1 Cassette Bootstrap (CBOOT)

The Cassette Bootstrap is used to load and start any program which is
in 'CBOOT Loader Format' (such as CTLOAD,SYS), CBOOT has already been
mentioned in Section 3.1 as being instrumental in loading the CAPS-11
Monitor into memory. A complete listing of CBOOT and most information
concerning its use in the CAPS-1]1 System is provided in Appendix E.

3.4.2 Resident Monitor {(RESMON)

Input and output operations are handled by RESMON, which contains
routines for all file-structured cassette I/0, and all teleprinter,
keyboard, and line printer I/0 (with the exception of CABLDR which
contains the I/0 routines necessary for performing the LOAD/C command,
as described in Section 3.4.5) Usually RESMON is never overwritten but
is always available in memory for access by the user (again, an
exception occurs when processing the LOAD/O command), Chapter 9
provides specific information concerning the way RESMON works and
methods by which the programmer can utilize RESMON in his own
programs.

RESMON also contains the System Communication Area (SYSCOM), which
provides to the user and to various system programs information
concerning available memory and locations of important Monitor
routines (see Section 3,4.7).

3.4.3 Cassette loader for CAPS-11 (CLOD11)

CLOD1l is used in the execution of the RUN, LOAD, and LOAD/G Monitor
commands by directing the loading of programs when these comands are
issued., In the case of the RUN command, the user may simultaneously
interact with the CSI while program loading is occurring (i.e., he may
enter his I/0 command string even though +the program lecad is in
progress) . CLOD11l performs error checking and reports certain types
of errors to the user; these are listed in Table 3-8,

3.4.4 Command String Interpreter (CSI)

The Command String Interpreter (CSI) is used by all system programs
(with the exception of the Editor and ODT) and may be used by any user
program which is loaded and started via the Monitor RUN command. Wwhen
the user runs a program, the CSI responds by printing an asterisk (%)
at the left margin of the console terminal page; the user responds by
entering all device and file I/O information needed by the program.
The CSI then constructs a table which contains the information entered
by the user, This table is described in more detail in Section 3,5,

3.4,5 Cassette Absolute Loader {CABLDR)

CABLDR is used to load programs written in 'Absolute Binary Format'
which 1is the format of all system programs and all Linker output (see
Chapter 6). CABLDR performs error checking during program loads and
halts wupon any error indication, at which time the user may set the
Switch Register to direct further action. Refer to Appendix E for
detailed information concerning user interaction with CABLDR.

3.4.6 Keyboard Listener (KBL)

The Keyboard Listener is that part of the Monitor responsible for
printing the dot at the left margin of the teleprinter page,
indicating to the user that he may enter any one of the eight Monitor
commands discussed in Section 3.3. The KBL is also responsible for
positioning the cassette tape for proper loading during a RUN, LOAD,
or LOAD/G command; it then passes control on to CLOD1ll, which handles
the actual loading during processing of these commands.

3.4.7 System Communication (SYSCOM)

The System Communications Area (SYSCOM) resides in absolute locations
40 through 57 and is loaded into memory {(as part of the RESMON source
code} as shown previously in Figure 3-1, This area provides a means
of communication between the Monitor and other programs not linked
with it, such as system and user programs.

The following information is classed into two sections--that which is
of general interest to the user, and that which is used by CAPS=-11
system programs and which may be helpful to user programs requiring

[FY)
[}

18

non-standard services. The user should refer to Section 3,5 in
conjunction with this information,

= SYSCOM=--General Information
During normal system use, the absolute locations listed in Table 3=6
are accessed and manipulated by the CAPS=11 System as noted:

Table 3-6
General Locations

Location Function

HIFREE Absolute location 42--this word contains the
address of the highest location available to the
user for program loading and storage which
precedes the ‘'expected' portion of the Monitor
still residing in memory. For example, after a
LOAD/G command, the user can 'expect' that all of
RESMON will remain intact, and thus HIFREE will
contain an address equal to the start of RESMON
minus two (bytes). After a RUN command, HIFREE
will wusually contain the starting location of the
CSI table minus two. After a LOAD/O command,
HIFREE will contain the address immediately
preceding the beginning of relocated CABLDR; the
user can plan to use all locations through the
location contained in HIFREE and still preserve
CABLDR.

DATPTR Absolute location 54--this word contains the
address in RESMON of the current date {as input by
the user wvia the Monitor DATE command). The six
bytes starting at this location contain, in order:

P two ASCII bytes containing the day
two ASCII bytes containing the month number
two ASCII bytes containing the year

LPSIZE Absolute location 40--this byte contains a number
which is one greater than the total number of
character columns existing on the wuser's line
printer (i.e., 133 (or 205 octal) for the standard
system; 81 (or 121 octal) for a non-standard 1line
printer).

HLTERR Absolute location 4l--this byte is examined by the
cassette interrupt handler upon every occurrence
of a controller error, If this byte has been set
to non=-zero by the user (never by the system), the
interrupt routine will halt whenever an error is
detected so that the user may examine the cassette
status register, Pressing the CONTinue key on the
processor console will cause the scftware tc con-
tinue. This byte is provided primarily as a hard-
ware debugging aid.

]

w
|

19

SYSCOM--Special Information

The following SYSCOM locations exist primarily for use by CAPS-11
system programs and should be accessed by the user with caution.
These locations should not be modified except as indicated.

Table 3-7
Special Locations

Location Function

KBLRES Absolute location 52=-=-this byte is a flag
indicating the state of the non-resident portion
of the Monitor. It is initially set to =1 when
the system is Dbootstrapped to indicate that the
entire Monitor is resident; it is cleared when a
LOAD/G, LOAD/O, or RUN command sets HIFREE above
portions of the Monitor in order to allow maximum
loading and storage space. KBLRES is interogated
by the CTRL/C and fatal error routines to
determine whether a complete reboot is necessary
or whether the Monitor need only be restarted (if
KBLRES=Q, the Monitor may not be entirely
resident). Certain system programs (EDIT, LINK,
ODT, PIP) do not require the extra memory space
made available when the Monitor is overwritten,
Thus, even though KBLRES is cleared when these’
programs are loaded, they do not actually use any
of the memory space provided between the beginning
of the Monitor and the beginning of RESMON, In
order to prevent a CTRL/C or fatal error from
causing a complete reboot of the Monitor, these
programs each reset KBLRES to -1, User programs
may also set KBLRES to -1; the user program should
be 1l1linked with the program KBLRES.OBJ which is
supplied on one of the 0OBJ Cassettes; this process
is described in Section 3.5.

Since a START command always clears KBLRES after a
load is complete, KBLRES must be set to -1 at
run-time rather than at load-time (using the
instruction MOVB #-1,8#52) in order to ensure that
the system will assume the Monitor is intact.

CSIADR Absolute location 46-—-this word contains the
starting address of the CSI. It is used by
certain system programs to call the CSI, enabling
entry of another command string after acticn on a
previous string has been completed. HNote that the
CsI is reusable only if it has not been
over-written.

{Continued on next page)

3-20

Table 3-7 (Cont.,)
Special Locations

Location Function
- KBLADR Absolute location 50--this word contains the
starting address of the KBL which is also the
lowest address in the Monitor. System software

restarts the Monitor at this address whenever a
CTRL/C or fatal error condition occurs preoviding
- the Monitor is resident (i.e., 1f KBLRES is
non-zero), Note that the user may compare the
address in KBLADR against his use of memory to
determine whether his program must set KBLRES in
order to allow a quick restart of the Monitor.

P ZERCORE Absolute location 53--this byte {which is
initialized to =1) 1is cleared by the Assembler
(PAL) to indicate that memory should be cleared
before the final section of PAL is loaded., This
is necessary since the portion of FPAL containing
the symbol table must be 1loaded into =zeroed
memory. This byte may be cleared by any user
program which requires use of the CSI. Such use
is not recommended without a careful reading of
the CLOD1l source 1listing (available from the
Software Distribution Center).

T CSITBST | Absolute location 44--this word holds the starting
address of the CSI table as it resides in memory.
It is used by system programs which make use of
the €SI, and may be utilized by any user programs
which use the CSI,

FILWRD 2Absolute location 56-~this word contains
information which is used by RESMON and ODT to
handle differences in console terminals. Some
terminals (such as a serial LA30 and a VTO053)
require that a certain character (e.qg., carriage
— return or line feed which both take longer than
most characters to print on the terminal) be
followed by a number of 'pad' or 'fill"
characters. The low-order byte of FILWRD
(absolute 1location 356) contains the character
which must be filled {(or O if none must be
filled); the high-order byte {(absolute location
57) contains the number of "fill' characters
required. RESMON and ODT will type this number of
nulls {(ASCII 000) after the character specified by
byte 56,

3.5 USER PROGRAM LOADING PROCESS

The CAPS-11 Monitor attempts to provide the user at all times with
maximum loading space and maximum storage space for system and user
programs., It does this by allowing unneeded parts of the Monitor to

be overwritten and by moving necessary sections to higher positions in
memory. The SYSCOM parameter HIFREE is used at various times during
the loading process to indicate the highest location into which user
(or system) programs may be loaded and the highest free location
available for use which still preserves RESMON (and possibly the CSI
table). Since the goal of the system is to maximize such areas,
HIFREE will wusually be set at points above Monitor components which
are not needed for loading or I1/0, even though a user program may hnot
actually overwrite the Monitor, When HIFREE is to be set to locations
above any Monitor location, the SYSCOM flag KBLRES 1is cleared to
indicate that the Monitor may not be intact. This has the result of
causing a physical reboot (requiring approximately 30 seconds) upon
occurrence of any fatal error or CTRL/C command, instead of a simple
restart of the KBL, 1In order to avoid a possible physical reboot of
the system in cases such as this, the user may link his program with
the object module KBLRES.OBJ on the Build Cassette, This program is
merely:

«ASECT

.=52 ;LDC. OF KBLRES Iy 5YSC0%
+BYTE-1 } 4ARK A BL AS RESIDENT
«END

KBLRES,0BJ should be the first program in the Linker input string,
Loading of this code will reset the SYSCOM KBLRES flag which is
cleared before loading,

The user who wishes to load and execute a program has four methods
available to him (reference should be made to Figure 3-1 while reading
the following):

1, Assuming the program has an extension of .SRU or any
user-assigned extension other than .SLG or .5LD, the RUN
command may be used to automatically load and start the
program, RUN allows use of the €SI, and RESMON is
available to handle all I/0 within the wuser program.
The loading procedure is as follows:

The cassette is first properly positioned for the load;
when this is done, the KBL and CABLDR are no longer
needed and may be overwritten., The CSI builds a table
which contains all the I/D information which the user
has entered. 300 bytes are initially reserved for the
table, and once it is built and its actual size is
determined, it is moved to occupy memory Jjust below
CLonll, Thus, program loading may use all memory space
to the bottom location of the CSI table.

When loading is complete, CLOD1l is no longer needed.
In order to maximize free memory space, the CSI table is
standardly moved up over CLODll so as to be positioned
immediately wunder RESMON, This destroys CLOD11 and
makes it necessary to reboot the system upon occurrence
of a CTRL/C or fatal error. To avoid this action (in
cases where the user program does not need space above
the start of the Monitor, i.e., above KBL), the user may
link KBLRES.OBJ with his program as described
previously: the second movement of the CSI table will
thus be prevented.

The 300 bytes originally reserved for the CSI table is a
parameter which may be changed by the user during
reassembly of the CAPS-~1ll Monitor.

2, The second choice available to the user for loading and
executing a program is to wuse the LOAD (and START)
command. The LOAD command allows a program to be loaded
only to the bottom location of the KBL, preserving the
entire Monitor for future use.

3. LOAD/G {and RUN used with the .SLG extension) may be
chosen to load and start a program as follows:

Before the file is loaded, the cassette is physically
positioned before the data of the file, KBL and CABLDR
may then be overwritten since CLODll now directs the
program load. Program loading may occur to the bottom
location of CLODll, After the load, CLOD1l is no longer
needed, so the user has the entire memory below RESMON
available for storage space. RESMON 1is preserved to
handle I/0 within the user's program. However, the rest
of the Monitor is not preserved and no future Monitor
commands are possible,

4, The LOAD/O command (and RUN used with a .SLO extension)
allows a program to he loaded providing maximum load and
storage space. The cassette is positioned for the data,
and CABLDR is moved into highest memory with CROOT,
where it directs program loading. Loading may occur to
the bottom 1location of CABLDR in its new position, and
after 1loading, the entire memory is available for
storage. Since no part of the Monitor is preserved, the
user program mist handle its own I/0, and no further
Monitor commands or functions are available for use.

3,6 NOTES ON DEVICE HANDLERS

The line printer prints characters as they appear in the buffer. Tabs
are output as spaces to the next tah stop (stops occur every 8
character positions). Carriage returns are ignored since a form feed
or line feed is assumed to follow causing the carriage to advance to
the beginning of the next line. If more than 132 characters in a
single 1line are output, the line printer handler issues a carriage
return/line feed after the 132nd character and continues output on the
next line, (See Appendix E for instructions regarding changing the
length of the LPT line from 132 to 80 columns.)

If the console terminal is an LT33 Teletype containing reader and
punch units, these may be used as input/output devices in conjunction
with the Teletype keyboard. To punch a tape, simply place the punch
unit to ON; to read a tape, place the reader unit to START.
Characters will be printed on the Teletvpe keyhoard as they are read
or punched,

The high-speed reader and punch may be used by PIP. Refer to Chapter
8 for details.

3.7 KEYBOARD MONITCR ERROR MESSAGES

Table 3-8 lists all error messages output by the system and lists the

source of each error. These messages are preceeded by one of two
symbols:
? Non-fatal error; execution continues if possible;

otherwise control returns to the CSI after the
message is printed.

¥ Fatal error; control returns to the KBL {if the
Monitor 1is entirely resident, the user will see
the dot printed after the message; if the Monitor
is not resident, the system will type %C? on the
line following the message; the user should ensure
that the System Cassette is mounted on drive 0,
and then type any character on the keyboard to
initiate a reboot).

Some messages may have numeric arguments which follow the message
itself; these usually indicate either the drive numher or the program
counter. HNote that messages which have RESMON as their source are
those which the user may see during operation of his program.

Note also that CSI error messages ending with a colon (:) are followed
by a 1line containing all command string characters entered until
detection of the character in error {(which is indicated by a ?).

Table 3-8
Kevboard Monitor Error Messages

Message Arg Meaning Source

10T PC Illegal IOT; user RESMON
specified an illegal
device or data mode, or an
illegal RESMON IOT code.

NO FILE OPEN drive # | READ or WRITE with no RESMON
SEEK or ENTER

OFFLINE drive # | Cassette not mounted; if RESMON
non-fatal, execution is
automatically resumed when
the cassette is mounted (if
the user improperly mounts the
cassette, a fatal error will
probably occur)

TIMING drive #| System software did not RESMON
service an initiated
request fast enough

{Continued on next page)

3-24

bx

Y

Table 3-8 (Cont.)
Keyboard Monitor Error Messages

Message

Agr

Meaning

Source

TRAP

WRT LOCK

FILE NOT FND

ILL CHMD

NO SENTINEL FILE

SYNTAX ERROR

BAD TAPE

NO START ADDR

PROG TOO BIG

SFTWR CHKSM ERR

TRUNCATED FILE

PC

Stack overflow, reference
to non-existent memory,
illegal or reserved
instruction, attempt to
reference a word on a
byte boundary; the SP at
the time. of the trap is
stored in location 44

Cassette write-locked; if
non-fatal, execution is
automaticaly resumed when

the cassette is write-enabled

Specified file not
found

Illegal command

No sentinel file is

present on the tape;

this message may occur
during uwse of the DIRECTORY
command at that point during
the directory listing where
the sentinel file is missing

Arquments following a
command are illegal

Hardware checksum error
{note that this error

may also be caused by
READ operations initiated
on a cassette which is
positioned after the
sentinel file})

Loaded program had no
transfer address

Program tco big for the
memory limits defined by
the type of load used

Software checksum error
(message followed by number
of errors)

File ends before transfer
address load block is
found

RESMON

RESMON

KBL

KBL

KBL

KBL

KBL,
CLOD11

KBL,
CLOD11

CLOD11

CLOD11

CLOD11

(Continued on next page)

Table 3-B (Cont.)
Keyboard Monitor Error Messages
Message Arg Meaning Source
CSI TABLE Command string too big CsI
OVERFLOW for the table
ILLEGAL CHAR: (C.S. Illegal character in CsT
line) command string
ILLEGAL DEVICE:| (C.S. illegal device CsI
line) specification
ILLEGAL SYNTAX:| (cC.S. Illegal syntax in CcsI
line) command string

LT

——

CHAPTER 4

ERITING THF SOURCE PROGRAM

The Text Editor (EDIT) is used to create and modify ASCII source
files. Controlled by user cormands from the keyboard, ERIT reads
ASCII files from cassette, makes specified changes, and writes ASCII
files back to cassette or lists them on the line printer or console
terminal.

The Editor considers a file to be divided into 1logical units called
pages., A page of text is generally 50-60 lines long (delimited by
form feed characters) and corresponds approximately to a physical page
of a program listing, The Editor reads text from the input file into
two internal buffers; from these buffers text is then called, a page
at a time, into the Text Buffer where the page becomes available for
editing., FEditing commands can then be used to:

Locate text to be changed
Execute and verify changes
Cutput a page of text to the output file

List an edited page on the line printer or conscle terminal

4,1 CALLING AND USING THE EDITOR
The Editor is called from the System Cassette by tvping:
+R EDIT
in response to the dot printed by the Keyhoard Listener. When the

Editor 1is in memory and ready to accept I/0 specifications, an
asterisk (*) is printed at the left margin of the console terminal

page,

4,1.1 Editor Options

None of the options previously listed in Chapter 3 are used by the
Editor. An automatic overflow feature is provided, however; 1f the
Editor discovers an end-of-tape condition, it prompts the user to
mount a new cassette and output is continued on this cassette under
the same output filename originally specified by the user (see Section
4.4.6).,

4,1.2 TInput and Output Specifications (Edit Read and Edit Write)

The Edit Read command opens a file for input. The form of the cormmand
is:

*LR%: FILENA,EXT

where # represents the unit drive number and FILNAM,EXT the file to be
opened. If no drive number is specified, the System Cassette~-drive
0--is assumed; if no extension is indicated, .PAL is assumed, Any
file currently open for input is closed. Edit Read inputs enough text
to fill its two internal input buffers; text is not read into the Text
Buffer however, and the contents of the other user buffers are not
af fected.

For example:

»ER]1: SAMPSS Cpen for input the file SAMP.PAL
on cassette drive #l1 ($ represents
typing the ALTMODE key)

The Edit Write command sets up a new file for output (however, no text
is output to cassette and the contents of the user buffers are not
affected). BAny current output files are closed and a new ocutput file
with the specified mname is opened on the indicated cassette drive,
The form of the command is:

*EW# :FILENA,EXT

~3

.

NOTE

A cassette which is currently open for
an output operation cannot be
simultaneously opened for an input
operation, If this is attempted, the
error message:

%1 /70 CHAN CONFLICT*?

is printed. However, a cassette which
is currently open for input can be
opened for output; the cassette is
repositioned to write the output file;
no further input from that cassette is
then possible until the output file is
closed,

If a file with the same name already
exists on the cassette indicated in the
Edit Write command, the old file will be
destroyed when the user executes an EXit
or End File command,

The user may create a new file by first opening an output file (via
the EW command) and then creating the text using the Insert command
(see Section 4.4.9); the new text will be stored on the drive under
the filename indicated in the EW command. Since a new file is being
created, no input file need be open to perform this operation.

Examples of use of these commands are:

*ER1: TEST.LSSS Open the file TEST.LS on cassette
drive 1 for input.

*EWFILE1.DATSS Open the file FILE1.DAT on drive
0 (the System Cassette) for output.

2EW1: OUT,. TXT$% Open the file OUT.TXT on drive 1

*3ovetextoes for output, There is no input file;
a new file will be created using the
Insert command,

4,1.3 Restarting the Editor

The Editor may be restarted at any time (while it is in memory) by
typing CTRL/P. This echoes as P on the console terminal followed bv
a carriage return/line feed., The Cormmand String Interpreter prints an
asterisk at the 1left margin indicating that it is ready to accept
another Editor command. All open files are closed and all buffers are
cleared,

4,2 MODES OF OPERATION

The Editor operates in one of two different modes: Command Mode or
Text Mode, In Command Mode all input typed on the keyhoard is
interpreted as commands instructing the Editor to perform some
operation, In Text Mode all typed input is interpreted as text to
replace, be inserted inteo, or be appended to the contents of the Text
Buffer.

Immediately after being loaded into memory and started, the Editor is
in Command Mode. The special character {*) is printed at the left
margin of the console terminal page indigating +that the Editor |is
waiting for the user to type a cormmand. All commands are terminated
by pressing the ALTMODE key twice 1in succession. Execution of
commands proceceds from left to right. Should an error be encountered
during execution of a command string, the Editor will print an error
message followed by an (*) at the beginning of a new line indicating
that it is still in Cormand Mode and awaiting a legal command. The
command in error (and any succeeding commands) are not executed and
mist be corrected and retyped.

Text mode is entered whenever the user types a command which must be
followed by a text string. These commands insert, replace, exchange,
or otherwise manipulate text: after such a command has been typed, all
succeeding characters are considered part of the text string until an
ALTMODE is typed. The ALTMODE terminates the text string and causes
the Editor to reenter Command Mode, at which point all characters are
considered commands again.

4,3 SPECIAL KEY COMMANDS

Special EDIT key commands are listed in Tabhle 4-~1. (Control commands
are tvped by holding down the CTRL key while typing the appropriate
character.)

Table 4-1
EDIT Key Commands

Command Meaning

ALTMODE Echoes as a §$ character. A single
ALTMODE terminates a text string. A
doulble ALTMODE executes the command
string. For example:

#GMOV A,BLS-1DSS

CTRL/C Echoes at the terminal as C. Typing
this command terminates execution of
EDIT commands and initiates a return to
the KBL. Anv open files are first
closed, and the contents of the Text
Buffer are lost, (see Chapter 3,
Section 3.2.5}).

(Continued on next page)

“}

n

Tahle 4-1 (Cont.)
EDIT Key Commands

Cormmancdl Meaning

CTRL /0O Echoes as 10, This cormand inhibits
printing on the console terminal until
completion of the current command
string. Typing a second CTRL/0 will
resume output (see Chapter 3, Section
3.2.5).

CTRL/P Echeoes as 1P and restarts the FEditor
{see Section 4.1,3)

CTRL/U Echoes as 4U. This comnand deletes all
the characters on the current input line
(see Chapter 3; Section 3.2.5).

CTRL/X Echoes as t¥ and causes the Editor to
ignore the entire command string
currently being entered. The Editor
prints a carriage return/line feed and
an asterisk to indicate that the user
may enter another command,

RUBOQUT The RUBOUT key is used to delete a
character from the current line and may
be used in both Command and Text Modes;
it echoes a backslash followed by the
character deleted, Each succeeding
RUBOUT typed bv the user deletes and
echoes another character. An enclosing
hackslash is printed when a key other
than RUBOUT is tvped, This erasure is
done right to left up to the last CR/LF,

Note that RUBOUT used under control of
the Editor echoes deleted characters
somewhat differently than when using
other system programs.

TAB Spaces to the next tab stop. Tah stops
are positioned every 8 spaces on the
terminal; tvping the TAB kevy causes the
carriage to advance to the next tab
position.

4,4 COMMAND STRUCTURE

Editor commands can be categorized as belonging to one of five groups:
a) those commands which allow text to be input from cassette and
output to either cassette, line printer, or the console terminal; b)
those commands which allow the character location pointer to be moved;
c) those commands which perform searches in the text for specific

characters or strings of characters; d) those cormmands which cause the
text to be modified either by insertion of new text, or deletion or
relocation of existing text; and e) a special classification of
commands called utility commands.

The general format for the EDIT cormmand string isg:

nCtext$
or
ncs

where n represents one of the legal arquments listed in Tahle 4-~2, C
is a one or two letter command, and text is a string of successive
ASCII characters. As a rule, commands are separated from one another
by a single ALTMODE; however, if the command requires no text, the
separating ALTMODE is not necessary. Commands are terminated by a
single ALTMODE; typing a second ALTMODE beagins execution.

4,4.1 Arguments

An argument is positioned before a command letter and is used either
to specify the particular portion of text to be affected by the
command or to indicate the number of times the command should be
performed, With some commands this specification is implicit and no
arguments are needed; other Editor commands require an argument.
Table 4-2 lists the formats of arquments which are used by commands of
this last tvpe.

Table 4-2
Command Arguments

Format Me aning

n n stands for any integer in the range -16383 to
+16383 and may, except where noted, be preceded by a
+ or -, If no sign precedes n, it is assumed to be
a positiwve number. Whenever an argqument is
acceptable in a command, its absence implies an
arqument of 1 (or -1 if only the - is present).

0 0 refers to the beginning of the current line.
/ / refers to the end of text 1in the current Text
Buffer,

= = is used with the J, b and € commands only and
represents =-n, where n is equal to the length of the
last text argument used,

The roles of all arquments are explained more specifically in
following sections.

4.4,2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage returns and line feeds within a command
string are ignored {(thevy are not ignored if they appear within a text
string}. Commands used to insert text can contain text strings that
are several lines 1long, in which case each individual 1line 1is
terminated with a carriage return/line feed (CR/LF) and the entire
command is terminated with a double ALTMODE,

Several commands can he strung together and executed in sequence. For
example:

#*BGMOV PC,RO3-2CR1$54GCLR 8R2S%%

NOTE

If a command currently being entered by
the user is within 10 characters of
exceeding the space available in the
Cormand Buffer, the messadge:

* CB ALMOST FULL »

is printed (the Command Buffer holds the
cormmand string until it is executed; see
Section 4.4.10), If the command can be
cormpleted within 10 characters, the user
may finish entering the cormand;
otherwise he should tvpe the ALTMODE key
twice to execute that portion of the
command line already completed. The
message is printed each time a character
is entered in one of the last 10 spaces.

If the user attempts to enter more than
10 characters the nmessage:

?CB FULL?

is printed and all commands tvped within
the last 10 characters are ignored. The
user again has 10 characters of
available space in which to correct the
condition.

Execution of a command string beqgins when the double ALTMODE is typed
and proceeds from left to right.

4.4.3 The Current Location Pointer

Most EDIT commands function with respect to a movable reference
pointer which 1is normally located between the most recent character
operated upon and the next character in the buffer. At any given time
during the editing procedure, the pointer can be thought of as

representing the current position of the REditor in the text, Most
commands use this pointer as an implied argument; commands are
available for moving the pointer anywhere in the text, thereby
redefining the current location and allowing greater facility in the
use of other commands.

4,4.4 Character and Line OQOriented Command Pronerties

When using character oriented commands, a numeric argument specifies
the number of characters that are involved in the operation. Positive
arguments represent the numher of characters in a forward direction
(in relation to the pointer), negative arquments the number of
characters in a backward direction. Carriage return and 1line feed
characters are treated as any other character. For example, assume
the pointer is positioned as indicated in the following text; each
line of text is terminated by a carriage return/line feed, indicated
here by J}|:

MOV #VECT,R2) |, Pointer is here
CLR @R2) |

The EDIT command -2J causes the Editor to move the pointer backwards
by 2 characters.

MOV #VECT,R2,J | Pointer is now here
CLR eR2) |

The command 10J advances the pointer forward by 10 characters and
places it between the carriage return and line feed characters at the
end of the second line.

MOV #VECT.R2) | Pointer is now here
CLR eR2),}

Finally, to place the pointer after the "C" in the first line, a =-14J
command 1is used,

MOV #VECT,R2) | Pointer is here
CLR eR2) [

The J (Jump) command is explained in detail in Section 4.4.7.

When using line oriented commands, the numeric argument represents the
number of 1lines involved in the operation. The Editor recognizes a
line as a unit when it detects a CR/LF corhination in the text, When
the user types a carriage return, the Editor automatically inserts a
line feed. Positive arquments represent the number of 1lines forward
{in relation to the pointer); this is accomplished by counting CR/LF
cormhinations beginning at the pointer., Hence, if the pointer is at
the bheginning of a line, a line oriented cormand argument of +1
represents the entire line between the current pointer and the
terminating line feed. If the current pointer is in the middle of the
line, an argument of +1 represents only that portion of the 1line
between the pointer and the terminating CR/LF. For example, assume a
buffer of:

]

MOV PCasR1) | Pointer is here
ADD #DRIV-.,R1),

MOV #VECT,R2.21

CLR eR2)|

The command to advance the pointer one line (lA) causes the following
change:

MOV PCsR1)|

ADD #DRIV-.,R1) | Pointer is now here
MOV #VECT,R2)]|

CLR @R2)]

The cormand 2A moves the pointer over 2 CR/LF combinations:

MOV PC,R1)

ADD #DRIV-.,R1)}1

MOV #VECT,R2)

(CLR eR2)| Pointer is now here

Negative arguments represent the number of lines backward in relation
to the pointer. Consequently, if the pointer is at the beginning of
the line, a line argument of -1 means "the previous 1line" (moving
backward past the first CR/LF and up to but not including the second
CR/LF); if the pointer is in the middle of a line, an argument of =1
means the preceding 1 1/2 lines. For exarple, given the text:

MOV PC,R1) |

ADD #DRIV=-.,R1) |

MOV #VECT,R2) | Pointer is here
CLR eRr2)]

A command of =-1A moves the pointer back 1 1/2 lines.

MOV PC,R1) ¢}

ADD_#DRIV-.,R1) | Pointer is here
MOV #VECT,R2)|

CLR @R2)|

Now a command of -1A backs the pointer by only 1 line.

4.4.5 Repetitive Execution

Portions of a cormand string may be executed more than once by
enclosing the desired portion in angle brackets (<>} and preceding the
left angle bracket with the number of iterations desired, The
structure is:

ClsC25n<C33C45>C558

where C1,C2...C5 represent commands and n represents an iteration
argument, Commands Cl and C2 are each executed once, then commands C3
and C4 are executed n times. Finally, command C5 is executed once and
the command 1line is finished, The iteration argument (n) must be a
positive number (1 to 16384); if not specified, it is assumed to be 1.
If the number is negative or too large, an error message is printed.
Iteration brackets may be nested up to 20 levels. Cormmand lines are

checked to make certain the brackets are correctly used and match.
For example, the following bracket structure is legal:

CLPLLLHLOD0D

while these structures are considered illegal and will cause an error
message: .

>><

>

As an example, assume the user wishes to input a file called SAMP
{stored on cassette drive 1) and change the first four occurrences of
the instruction MOV #200,R0 on each of the first five pages to
MOV #244,R4. He enters the following command line (commands used in
this example are explained in detail later in the chapter):

*ER1: SAMP$5<R4<BGMOV #20Q, RP$=J53<GA3=C45>>>5%}
) c

B

———

A

The command line contains 3 'sets' of iteration loops (A, B, C) and is
executed as follows:

Execution initially proceeds from left to right; the file SAMP on
drive 1 is opened for input and the first page is read into memory.
The pointer is moved to the beginning of the buffer and a search is
initiated for the character string MOV #200,R0. When the string is
found, the pointer is positioned at the end of the string, but the =J
command moves the pointer back so that it is positioned immediately
preceding the string. At this point, execution has passed through
each of the first two ‘'sets' of iteration loops (A, B) once. The
innermost loop (C) is next executed three times, changing the 0's to
4's, Control now moves back to pick up the second iteration of loop B
and again moves from left to right. When loop C has executed three
times control again moves hack to loop B. When loop B has executed a
total of 4 times, control moves back to the second iteration of loop
A, and so forth until all iterations have been satisfied.

4.4,6 Input and Output Cormmands

Input commands are used to read text into the Text Buffer where it
then becomes availahle for editing or listing. Output commands cause
text to he listed on the console terminal or line printer, or written
out to cassette, Some cormmands are specifically designed for either
input or output functions, while a few cormmands serve both purposes,

If an output cassette becomes full during any output operations, the
Editor will prompt the user to mount another cassette by printing:

#?
where # represents one of the drive numbers. After the nuser has

mounted the new cassette the output operation continues. The files
may later be combined under one filenare using PIP (see Chapter 8).

»

READ

The Read command (R) causes a page of text to be read from the input
file (previously specified in an ER command) and appended to the
current contents, if any, of the Text Buffer. The form of the command
is:

R

No arquments are used with the R command and the pointer is not moved,
Text is input until one of the following conditions occurs:

1. A form feed character (signifying the end of the page}
is encountered. At this point, the form feed will be
the last character in the buffer; or

2., The Text Buffer is within 500 characters of being full.
(When this condition occurs, Read inputs up to the next
carriage return/line feed combination, then returns to
command mode. An asterisk is printed as though the Read
were complete, but text will not have been fully input);
or

3. An end-of-file condition is detected (the *EOF* message
is printed when all text in the file has been read into
memory and no more input is available).

The maximum number of characters which can be brought into memory
using a Read command is approximately 5,000 for an BK system. Each
additional 4K of memory allows another 5,000 characters to be input,
An error message 1is printed if the Read exceeds the memory space
available, or if no input is available.

WRITE

The Write command (W) moves lines of text from the Text Buffer to the
output file {(as specified in the EW command). The formats are:

nw Write all characters beginning at the pointer and
ending at the nth CR/LF to the output file.

-nW Write all characters beginning on the -nth line
and terminating at the pointer to the output file,

0W Write the text from the beginning of the current
line to the pointer,

/W Write the text from the pointer to the end of the
buffer.

The pointer is not moved and the contents of the buffer are not
af fected. If the bhuffer is empty when the Write is executed, no
characters are output.

Examples:

*5W3ES Write the next 5 1lines of text
starting at the pointer to the
current output file,

*=205E Write the previous 2 lines of text,
endina at the pointer to the
current output file,

NEXT

The Next command acts as beth an input and output command since it
performs both functions. PFirst it writes the current Text Buffer to
the output file, then clears the buffer, and finally reads in the next
page of the input file, The Next command can he repeated n times by
indicating an argument before the command., The command format is:

ni

Hext accepts only positive arguments and leaves the pointer at the
beginning of the buffer upon completion of the operation. If fewer
than n pages are available in the input file, all available pages are
read in, output to the output file, and deleted; the pointer is left
positioned at the beginning of an empty buffer, and an error message
is printed. (i is equivalent to tvping the command combination
n<B/W/DR> and provides a means of spacing forward, in page increments,
through the input file,)

LExample:
*2N§S$ Write the contents of the current
Text Buffer to the output file,
clear the buffer and read and write
the next page of text; clear the
buffer and then read ancother page.
LIST

The List cormand prints the specified number of lines on the console
terminal. The format of the cormand is:

nl Print all characters beginning at the pointer and
ending with the nth CR/LF.

-nl. Print all characters beginning with the first
character on the -nth line and terminating at the
pointer.

oL Print from the beginning of the current line up to
the pointer.

/L Print from the pointer to the end of the buffer,

The pointer is not moved after the cormand is executed.

Cxamples:

*-2L$S Print all characters starting at
the second preceding 1line and
ending at the pointer.

x4LSS Print all characters beginning at
the pointer and terminating at the
the 4th CR/LF.

Assuming the pointer location is as follows:

MOVE S5¢R1),@R2) |
ADD, R1,(R2)+) Pointer is here

The command:
*-1L$$
Prints the preceding 1 1/2 lines:

MOVB S5(R1),@R2) |
ADD

VERIFY
The Verify command prints the current text line (the 1line containing
the pointer) on the terminal., The position of the pointer within the
line has no effect and the pointer does not move., The command format
is:

\

No arguments are used. (V is equivalent to typing OLL.)

Example:
xVSS The command causes the current line
ADD RI,(R2)+ of text to be printed.
END FILE
The End File command closes the current output f£file. This command

does no input/output operations and does not move the pointer; the
buffer contents are not affected. The output file is <closed,
containing only that text previously output., The form of the command
is:

EF

No arguments are used in the EF command.

EXIT

The EXit command is used to terminate editing, copy the remainder of
the input file to the output file, and return control te the Keyboard
Listener (the Monitor should he entirely resident in memory so that a
rehoot 1is unnecessary). The EXit cormmand performs consecutive Next
commands until the end of the input file is reached, then closes both
the input and output files. The command format is:

EX
No arguments are used in the EX cormand.
NOTE

Either an EF or EX command is necessary
ta make an output file permanent, If a
t+C is typed prior to executing an EF,
the current output file will not be
saved,

An example of the contrasting uses of the EF and EX commands might be
the following: assume an input file called SAMPLE (on cassette drive
0) contains several pages of text. The user wishes to make the first
and second pages of the file separate files called SAM1 and SAM2
respectively; the remaining pages of text will then make up the file

SAMPLE. This can be done using the folleowing cormands:

*ERP: SAMPLESS
*EW1:SAMIES
*NEFSS

2EW1: SAM2SS
ENEFSS

*EW1: SAMPLESEXSS

The user might note that the EF commands are actually not necessary in
this example, since the EW command closes a currently open output file
before opening another,

4.4,7 Pointer Relocation Cormands
Pointer relocation commands allow the current location pointer to be

moved within the Text Buffer. Several commands are avallable for this
purpose.

BEGINNING

The Beginning command moves the current location pointer to the
beginning of the Text Buffer. The command format is:

B

There are no arguments. For example, assume the bhuffer contains:

“

MOVB
ADD
CLR
MOVE

The B command:

*BS§S

S5CR1),8R2) |
R1s¢R2)+) |

erRg) |

Pointer is here

6(RT).@R2);

will move the pointer to the beqginning of the Text Buffer:

(MOVE

5c(R1),8R2) |

_Pointer is now here

ADD
CLR
MOVB

JUMP

3;;3R$2) +) ‘

6CR1), @R2) |

The Jump command moves the pointer over the specified number of

characters in the Text Buffer.

(+ or =)nJd

0g

/3

The form of the command is:

Move the pointer (backward or forward) n

characters.

Move the pointer to the beginning of the current
line {(equivalent to 0A).

Move the pointer to the end of the Text Buffer

{equivalent to

/R) .

Move the pointer backward n characters, where n
equals the length of the last text argument used,

Negative argquments move the
buffer, positive arguments
form feed characters as any
position for each.

Examples:
*5J%8%
*-4J33%
*BSGABCS=J58
ADVANCE

The Advance command is

pointer toward the beginning of the
toward the end., Jump treats CR, LF and
other character, counting one buffer

Move the pointer forward 5 characters
Move the pointer back 4 characters
Move the pointer so that it immediately

precedes the first cccurrence of 'ABC'
in the buffer,

similar to the Jump command except that it

moves the pointer a specified number of lines (rather than single

characters) and leaves
line. The form of the

the pointer positicned at the beginning of the
command is:

nA Advance the paeinter forwvard n lines and position
it at the beginning of the n+l line.

-nA Move the pointer backward past n CR/LFs and
position it at the beginning of the -nth line,

OA Advance the pointer to the beginning of the
current line (equivalent to 0J).

/A Advance the pointer to the end of the Text Buffer
{equivalent to /J).

For example, assume the buffer contains:

CLR @r2) | Pointer is here

The command:

*BASS

Moves the pointer as follows:

,CLR 8R2) | Pointer is now here

4.4.,8 Search Commands

Search commands are used to locate specific characters or strings of
characters within the Text Buffer,

GET
The Get command is of the form:
nGtext5ss

and searches the current Text Buffer starting at the pointer for the
nth occurrence of the text strinqg. If the search is successful, the
pointer is left immediately following the nth occurrence of the text
string, If the search fails, an error message is printed and the
pointer is left at the end of the Text Buffer,

The argument must be positive and is assumed to be 1 if not otherwise
specified. The text string mav be any length and immediately follows
the G command. The search is made on the portion of the text between
the pointer and the end of the buffer.

Example:

Assuming the buffer contains:

MOV PC, R1

ADD #DRIV~.,R1

MOV #VECT,R2

CLR #R2, __Pointer is hecre
MOVE S¢CR1), BR2

ADD R1,<(R2)+

CLR #R2

MOVB 6(R1), 8R2

The command:

*BGADDSS

positions the pointer as follows:

ADD, #DRIV-.,R1 Pointer is here

The command:

*3GOR2SS

positions the pointer:

ADD R1,(R2)+
CLR #R2, Pointer is here

After search commands, the pointer is left immediately following the

text object. Using a search command in connection with =J will place
the pointer before the text ohject, as follows:

*GOBJ1$=18§
The pointer will now be placed immediately before 'OBJ1':

INC 0BJ1 Pointer is here

FIND
The form of the Find command is:
nFtext$s

Starting at the pointer, this command searches through the entire text
file for the nth occurrence of the character string specified in the
command, It combines the Get and Next commands such that 1f the
search is not successful in the current buffer, the contents of the
buffer are output to cassette, the huffer contents are then deleted, a
new page is read in, and the search is continuecd. This will proceed
until either the search string is found or until the complete source
text has been searched, If the search is successful, the pointer is
left immediatelv following the nth occurrence of the text string. If
the search fails (i.e., the end-of-file is detected for the input file
and the nth occurrence of the text string has not been found}, an

4-17

error message 1is printed and the pointer is left at the beginning of
an empty Text Buffer. (By delibkerately specifving a non-existent
search string, the user can close out his file; that is, he can copy
all remaining text from the input cassette to the output cassette.)

The arqument must be positive and is assumed to be 1 if not ¢therwise
specified.

Example:

*2FMOVB 6(R1Y,8R23$ gearch the entire input file for
the second occurrence of the text
string MOVDB 6(R1) ,4R2, Each
unsuccessfully searched buffer is
written to the output file.

PNOSITION

The Position cormand searches the input file for the nth occurrence of
the text string. If the text string is not found, the buffer is
cleared and a new page is read from the input file. The format of the
command iss

nPtexts$s

The argument must be positive, and is assumed to be 1 if not otherwise
specified. When a P command is executecd, the current contents of the
buffer are searched from the location of the pointer to the end of the
buffer. If the search is unsuccessful, the buffer is cleared and a
new page of text is reard and the cycle is continued. (The difference
between the Find and Peosition cormands 1is that Find writes the
contents of the searched huffer to the output file while Position

deletes the contents of the huffer after it is searched.)

If the scarch is successful, the pointer is positioned after the nth
occurrence of the text, If it is not, the pointer is left at the end
of an empty buffer.

Lxample:
*FADD RI1,(R2)+$$ Search the entire input file for

the string ADD R1,(n2)+, deleting
unsuccessfully searched buffers,

4,4,9 Text Modification Commands

The following cormmands are used to insert, relocate, and delete text
in the Text Buffer.

INSERT

The Insert command causes the Lditor to enter Text Mode and allows
text to bhe inserted irmmediately following the pointer. Text is
inserted until an ALTMODI is tvped and the pointer is positioned after
the last character of the insert, The cormand format is:

Itexts

No arguments are used in the Insert cormmanc. and +the text string

limited only

by the size of the Text Buffer and the space available,

All characters except ALTMODE are legal in the text string.

EDIT automatically protects against overflowing the Text Buffer during
If the I command is the first command in a repetitive

an Insert,

command line, EDIT ensures that there will be enough space for

Insert to be

Examples
*IMOV #BUFF, R2 Insert the specified text at
MOV #LINE,R]1 the current location of the
MOVB -1(R2), R0 pointer and leave the pointer
£$ positioned at the beginning of
x the line following RO.
DELETE
The Delete command removes a specified number of characters from
Text Buffer. Characters are deleted starting at the pointer; upon
completion of the command, the pointer is positioned at the
character following the deleted text. The form of the command is:
(+ or =)nD Delete n characters (forward or backward from +the
pointer).
0D Delete from beginning of current line +to pointer
(equivalent to OK).
/D Delete from pointer to end of Text Buffer
(equivalent to /K).
=D Delete -n characters, where n equals the length of
the last text argument used,
Examples:
2-2DSS Delete the two characters
immediately preceding the pointer,
= *BSFMOV R1%2DS$ Delete the text string 'MOV RI1.,'
(=0 used in conjunction with a
search command will delete the
indicated text string)
- Assuming a buffer of:
ADD R1,C(R2)+
CLR @R Pointer is here

executed at least once. If repetition of the cormand
exceeds the available memory, an error message is printed.

4-19

The cormmand:
*BDS$S

leaves the buffer with:

ADD R1.(R2)+
(@R2 Pointer is here
KILL
The Kill command removes n lines from the Text Buffer. Lines are

deleted starting at the current location pointer; upon completion of
the command, the pointer is positioned at the beginning of the line
following the deleted text. The comman¢d format is:

nK Delete lines beginning at the pointer and ending
at the nth CR/LF.

-nK Delete lines beginning with the first character in
the -nth line and ending at the pointer.

0K Delete from the beginning of the current line to
the pointer (equivalent to 0D).

/K Delete from the pointer to the end of the Text
Buffer {equivalent to /D).

Example:

*2KSS Dalete lines starting at the
current location pointer and ending
at the 2nd CR/LF,

Assuming a buffer of:
ADD R1,(R2)+

CLRL_ @rR2 Pointer is here
MOovE 6(R1), @R2

The command:
2/KES
Alters the contents of the buffer to:

ADD R1s,(R2)+
CLR, Pointer is here

CHANGE

The CHANGE command replaces n characters, starting at the pointer,
with the indicated text string and leaves the pointer positioned
immediately following the changed text, The format of the command is:

s

{(+ or -)nCtext$ Replace n characters (forward or backward
from the pointer) with the specified text.

OCtext$ Replace all characters from the beginning of
the line up to the pointer with the specified
text, {lEquivalent to 0OX)

/Ctext$ Replace all characters from the pointer to
the end of the buffer with the specified
text. (Equivalent to /X)

=Ctexts$ Replace =-n characters with the indicated text
string, where n represents the length of the
last text argument used.

The size of the text is limited only bv the size of the Text Buffer
and the space available. All characters are legal except ALTMODE
which terminates the text string.

If the C command is enclosed within angle brackets so that it will be
executed more than once, and if there is enough space available so
that the command can be entered, it will be executed at least once
(provided it is first in the command string). If repetition of the
command exceeds the available memory, an error message is printed.

Example:

*5CAVECTSS Replace the 5 characters to the
right of the pointer with $VECT,

=C can be used in conjunction with a search command to replace a

specific text string as follows:

*GFIFTY: $=CFIVE:$ ping the occurrence of the text
string FIFTY and replace it with
the text string FIVF,

Assuming a buffer of:

CLR eR2
MOV, S5¢R1), 8R2 Pointer is here

The commands:
#dCADDBSS
Leaves the buffer with:

CLR e#R2
ADDBy, S(R1), @R2 Pointer is here

Typing nCTEXTS is equivalent to typing =-nDITEXTS,

EXCHANGE

The Exchange command replaces n lines, beginning at the pointer, with
the indicated text string and leaves the pointer positioned after the

changed text,
The form of the cormmand is:

nXtexts Replace
pointer

all characters beginning at the
and ending at the nth CR/LF with the

indicated text.

-nXtext$ Replace all characters beginning with the
first character on the -nth line and ending
at the pointer with the indicated text,

OXtexts Replace the current line from the beginning

to the

pointer with the specified text,

(Equivalent to 0C)

/Xtexts Replace the lines from the pointer to the end

of the

buffer with the specifed text.

(Fquivalent to /C}

All characters are legal in
terminates the text.

the text string except ALTMODE which

For example, assuming a buffer of:

ADD R1s(R2)+

CLR @R2
The command:

*XR1,C(R3)+

Pointer is here

replaces the text to the right of the pointer (on the current line)

with the indicated text.

If the X command is enclosed
execiuted more than once, and
s0 that the X command can be
once (provided it is first

within angle brackets so that it will be
if there is enough memory space available
entered, it will be executed at least
in the command string). If repetition of

the command exceeds available memory, an error message is printed,

4.4,10 Utility Commands

The memory area used by the Editor is divided into logical buffers as

follows:

——

MACRO BUFFER

High Memory
SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory
TEXT BUFFER

The Text Buffer contains the current page of text being edited and
the Command Input Buffer holds the command currently being typed at
the terminal. Both of these buffers have been previously menticned,

The Save Buffer contains text stored with the Save (S) command and the
Macro Buffer contains the command string macro entered with the Macro
(M) command (each are explained next}. The Macro and Save Buffers are
not allocated space until an M or S command is executed. Once an M or
S cormand is executed, a OM or 0U (Unsave) command must be executed to
return that space to the free area.

The buffers expand and contract to accomodate the text being entered.

SAVE

The Save command copies a specified numher of lines starting at the
pointer into the Save Buffer. The form of the command is:

ns

The argument (n) must be positive. The pointer position does not
change and the contents of the Text Buffer are not altered. Each time
a Save is executed, the previous contents of the Save Buffer, if any,
are destroyed, If the Save command causes an overflow of the Save
Buffer, an error message is printed,

Example:

Assuming the Text Ruffer contains the following assembly language
subroutine:

5 SUBROUTINE MSGTYP

SWHEN CALLED, EXPECTS R TO POINT TO AN
3ASC11 MESSAGE THAT ENDS IN A ZERO BYTE
sTYPES THAT MESSAGE ON THE USER TERMINAL

« ASECT

MSGTYP: TSTB (X0} FDONE?
BEQ MDONE JYES~RETURN

MLOOP: TSTB @#177564 JNO=-15 TERMINAL READY?
BFL MLOOP JNO-WAIT
MOVB (Z2)+,8#177566 JYES-PRINT CHARACTER
BR MSGTYP JLOOP

MDONE:T RTS PC 3 RETURN

The command:

#+B13588

stores the entire subroutine in the Save Buffer; it may then be
inserted in a program whenever needed using the U command. =

UNSAVE

The Unsave cormand inserts the entire contents of the Save Buffer into
the Text Buffer at the pointer 1location and leaves the pointer
positioned following the inserted text.

The form of the command is:

R
U Insert the contents of the Save Buffer into the
Text Buffer,
0vU Clear the Save Buffer and reclaim the area for
text,
Zero is the only legal argument to the U command,
The contents of the Save Buffer are not destroyed by the U command
(only by the 0U command) and may be Unsaved as many times as desired,
If the Unsave command causes an overflow of the Text Buffer, an error ™
message is displayed.
MACRO
The Macro cormand inserts a cormand string into EDIT's HMacro Buffer,
and is of the form:
M/command string/ Store the command string in the
Macro Buffer —
oM Clear the Macro Buffer and
or M// reclaim the area for text

/ represents a delimiter character., The delimiter is always the first
character following the M cormmand and may be any character which does
not appear within the Macro command string itself.

Starting with the character following the delimiter, EDIT places the

Macro cormand string characters into its internal Macro Buffer until

the delimiter is encountered again. A double ALTMODE then returns

EDIT to Command Mode, The HMacro cormand does not execute the Macro

string; it merely stores the command string so that it can be executed -
later by the Execute Macro (FM) command., Macro does not affect the

contents of the Text or Save Buffers,

All characters except the delimiter are legal Macro command string

characters, including single ALTMODE's to terminate text commands,

All commands except the M and EM Commands are leqgal in a Macro command N
string,

In addition to the OM cormand, typing the M command immediately
followed by two identical characters (assumed to be delimiters) and
two ALTMODE characters also clears the Macro Buffer,

Examples:

xM//8% or Clear the Macro Buffer
*eMSS
*M/BGROS-C15/8% Store a Macro to change RO to R1

EXECUTE MACRO

The Execute Macro command executes the command string specified in the
last Macro command and is of the form:

nEM

The Macro is executed n times and returns control to the next command
in the original command string.

The argument must be positive,
Examples:

*B1ODDEMES Execute the Macro stored

7*SRCH FAIL IN MACRO*? in the previous example.
An error message is
returned when the end of
buffer is reached. (This
Macro effectively changed
all occurrences of RO in
the Text Buffer to Rl.}

*IMOV PC,R1IS2EMICLR @R2$S In a new program, insert
MOV PC,Rl, then execute
the command string in the
Macro Buffer twice before
inserting CLR @R2.

4.5 ERROR MESSAGES

The Editor prints an error message whenever one of the error
conditions in Table 4-3 occurs. Prior to erecuting any commands, the
Editor first scans the entire command string for syntax errors (format
errors such as illegal arguments, illegal combinations of commands,
etc.,). If an error of this type is found, an error message is printed
in the fellowing format:

?ERROR MSG?

and no commands are executed; the user must retype the cormand.

If the command string contains no syntax errors, execution is started;
however, errors during execution are also possible (buffer overflow,
I/0 errors, etc), If an error is found at during execution, a message
of the form:

?*ERROR MSG*?

is printed, In this case, all commands preceding the one in error
will have bheen executed; the command in error and those following will
not be executed. Most errors will generally be of the syntax type and
can be corrected hefore execution.

When an error occurs during execution of a Macro, the message format
is:

?*message IN MACRD*?
*

Table 4-3
EDIT Error Messages

Message Explanation
?"{>"ERR? Too deep nesting or illegal use
of brackets, or unmatched

brackets,

* CB ALMOST FULL * The cormand currently being
entered by the user is within 10
characters of exceeding the space
availahle in the Command Buffer
{see Section 4.4.2).,

?CB FULL? Command exceeded the space
allowed for a command string in
the Command Buffer.

2REQF*? Attempted a Read or Next command
and no data was available.

?*FILE NOT FOUND*? Attempted to open a nonexisting
file for editing.

?*HDW ERR*? A hardware error occurred during
I1/0.

?ILL ARG? The argqument specified was

illegal for the command used. A
negative arqument was specified
wihere only a positive argument
was allowed, or an argument
exceeded the range + or -16384,

?ILL CMD? EDIT does not recoghize the
cormand specified.

{(Continued on next page)

Table 4-3 (Cont.)
EDIT Error Messages

Message

Explanation

?ILL MAC?

?*ILL NAME*?

?*I/0 CHAN CONFLICT*3

?*NO FILE*?

?*NO ROOM*?

?%¥SRCH FAIL*?

H*TAPE FULL*?

Delimiters were improperly used,
or an attempt was made to enter
an M command during execution of
a Macro, or an attempt was made
to execute an EM command while an
EM was in progress.,

The filename or device specified
in an EW or ER command is
illegal.

An attempt was made to open an
input file on a cassette already
open for output, or vice versa.

Attenpted to Read or Write when
no I/0 file was open,

Attempted to Insert, Save,
Unsave, Read, Next, Change or
Exchange when there was not

enough room in the appropriate
huf fer.

The text string specified in a
Get, Find or Position command was
not found in the available data.

Available space for an output
file is full {i.e., there is no
room for any part of +the output
file).

4.6 EXAMPLLE USING THE EDITOR

The following example illustrates the use of the Editor to change
program which is stored on cassette drive 0.

a

Sections of the printout

are coded by letter and corresponding explanations follow the example.

[.R EDIT

A (*ER@: TEST1.PALSS
*EW1s TEST2. PALSS
% RES
fx/L 55
$ TEST PROGRAM
PC=%7
«GLOBL MSGTYP
START: MOV #1220, %4 SINITIALIZE STACK

J MOV #MSG, %0 3POINT R@ TO MESSAGE
B JSR PC,MSGTYP JPRINT IT
HLT 3STOP
MSG: «ASCII /IT WORKS/
«BYTE 15
.BYTE i2
.BYTE @

C {#B1J5DS$S
D{mGPROGRAMSVSS

3 PROGRAM

*I TO TEST SUBROUTINE MSGTYP. TYPES
E|3“THE TEST PROGRAM WORKS"

30N THE COMSONOSMANSOLE TERMINAL

$5
F {¢F.ASCI1 /$8CTHE TEST PROGRAM WORKSSS

«P.BYTEt+ U
G {tF.BYTE BSVSS
+BYTE 8
(%1

+END

$B/LSS
s PROGRAM TO TEST SUBROUTINE MSGTYP. TYPES
$"THE TEST PROGRAM WORKS"
JON THE CONSOLE TERMINAL

PC=127
+GLOBL MSGTYP
H 4 START: MOV #1000, %6 SINITIALIZE STACK

MOV #MSG, 108 JPOINT RO TO MESSAGE
JSR PCsMSGTYP 3PRINT LT
HLT 3 STOP

MSG: «ASCI1 /THE TEST PROGRAM WORKS/
.BYTE 15
.BYTE 12
.BYTE ©

L . END

*BGHLTS=CHALTSVSS

1 HALT 3STOP

*EXSS

The EDIT program is called and prints an *, The input file is
TEST1.PAL on drive 0, and the output file is TEST2.PAL on drive
1; the first page of input is read.

The buffer contents are listed.

Be sure the pointer is at the beginning of the buffer. Advance
the pointer 1 character (past the ;) and delete "TEST ".

Pogition the pointer after PROGRAM and verify +the 1line; the
pointer is not moved.

Text is inserted. RUBOUT is used to correct a typing error.

Search for .ASCII / and change "IT WORKS" to "TIE TEST PROGRAM
WORKS" .

CTRL/U is typed to cancel the P command. +the F command is then
used to search for .BYTE 0 and verify the location of the pointer
with V command.

Insert text. The pointer is returned to the beginning of the
buffer and the entire contents of the buffer are listed,

The user notices that HALT 1is spelled incorrectly, makes the
change and verifies it.

The input and output files are closed after copying the current
Text Buffer as well as the rest of the input file into the output
file, EDIT returns control to the Monitor.

CHAPTER 5

ASSEMBLING THE SCURCE PPOGRAM

The CAPS-11 Asserbler is a two pass asserbler (with an optional thirxd
pass) which allows the user to create a binary object file from a
source program. In the first two passes, the source program (which is
generated on-line using the Editor) is translated inte an object
module which may contain both absolute and relocatable code.
Separately assembled object modules may reference one another using
special symhols called gleobal symbols, Object modules are then
processed by the Linker, producing a lcad module which may bhe leoaded
into memory and executed (the linking process is explained in Chapter
6). During the second (or the optional third) pass, the Assembler
produces a complete octal/syrbolic listing of the assembled program.
The listing 1is especially useful for docurentation and debugging
purposes,

This chapter not onlv explains how to write PAL assembly language
programs, but also how to assemble the source prograns into object
modules. In explaining how to write source programs it is necessary,
especially at the beginning of the chapter, to make frequent forward
references. The user should first read through the entire chapter to
get a "“"feel" for the lanquage, and then rereacd the chapter, this time
referring to appropriate sections as indicated in order to gain a
thorough understanding of the lanquage and assembling procedures,

It is assumed that the user is familiar with the PDP-1l PROCESSOR
HANDBOOX and the PPP-11 PERIPHERALS AND INTERFACING HANDBQOK, with
emphasis on those sections which deal with +the PDP=11 instruction
repertoire, formats, and timings; a thorough knowledge of these is
vital to efficient assermhly language programming.

5.1 CALLING AND USING THE ASSEMBIER
The Assembler is called from the System Cassette by tvping:
<R PAL
in response to the dot printed bv the Kevhoard Listener. The Command

String Interpreter responds by printing an asterisk (*) at the left
margin indicating that it is ready to accept input/output

specifications. The user may enter his command line followed by a
carriage return even though the remainder of PAL is simultaneously
being loaded into memory.

5.1.1 Assembler Options
The options listed in Table 5-1 are valid for use with the Assembler
and are indicated by the user in the I/0 specification line,

Table 5-1
PAL Options

Option Meaning
/C This option allows an I/0 specification
line to be broken into several segments.
The option character is followed

imnediately by a carriage return and the
command string is continued on the next
line; this next 1line must hegin with a
comma.

/F This option is valid only after an input
filename and specifies that the Assembler
should not perform a REWIND operation but
should continue searching the cassette in
a forward direction for this file. The /F
feature saves the user time when he wishes
to input several files from one cassette
and these files appear on the cassette in
the same order as they are to be
assembled. The /F option prevents the
Assembler from performing a REWIND before
accessing each file.

/0 This option is wvalid only after an output
filename and indicates that the file
{(immediately preceding the option) is to
be created and used only if a previously
opened output file has been written to the
end of the cassette and more output
remains, All output files should later be
comhined under one name using PIP (see
Chapter B8).

/P This option is used whenever a file
referenced in the I/0 specification line
exists on a cassette which is not
currently mounted on a drive. Before
attempting to search for the file, the
Assenhler instructs the user to mount the
proper cassette on the drive by printing
$? where 4 represents the drive number,
After the user has switched cassettes on
the drive, he may continue execution by

typing any character on the keyhoard.

(Continued on next page)

Tahle 5-1 (Cont,)
PAL Options

Option Meaning

/X This option is valid only after an output
filename and causes extended binary output
(i.e., those locations and binary contents
heyond the first binary word per source
statement) to be suppressed from the
listing,

5.1.2 Input and Output Specifications

Input and output specifications are typed by the user in response to
the asterisk printed by PAL. The format of the command string is:

*DEV:FILE.BIN/OPT,DEV:FILE.LST/OPT=DEV:INPUT,1/C
,DEV:INPUT.2/0OPT,...DEV:INPUT.n/OPT

DEV represents the device, FILE.BIN represents the binary output file
and FILE,LST represents the 1listing output file. Null output of
either the binary or listing file is represented by a single comma in
the command line., For examnple:

*1:FILE. BIN, =[NPUT.PAL

causes only the hinary file to be produced. Any number of input files
(INPUT.1,.,INPUT.n) is permitted, OPT represents anv one (or more} of
the options listed in Table 5-1.

If both the binary and 1listing output files are to be sent to
cassette, the Assembler will require three passes since it cannot
output these two files simultaneously. Otherwise only two passes are
required.

Under an 8K system, control returns to the Monitor following the
assembly process; under svstems greater than 8K, control returns to
the CSI, indicated by an asterisk, and the user can enter another
command line.

5.1.3 Restarting the Asserhler

The Assembler may be restarted at any time (while it is in memory) by
typing CTRL/P,. This echoes as *P on the consnle terminal and is
followed by a carriage return/line feed. Note that this restarts the
Assembler Dbut does not always allow the user to input a new command
string. In 8K systems, the CSI has been overlaid by the Assembler and
cannot be accessed; therefore, typing CTRL/P will restart the assembly
already in progress. In larger systems, the CSI is not destroyed and
typing '+P' while PAL is running will allow the user to enter a new
cormmand string.

5.2 CHARACTER SET

The following ASCII characters are used in writing a PAL source
program (see Appendix A):

1., The letters A through 7, (Both upper and lower case letters
are acceptable, although lower case letters will be converted
to upper case letters upon input,)

2. The numbers 0 through 9.

3. The following separating or terminating symbols:

: = % # @ () , ;" ' + - & !

carriage return tab space line feed form feed

4, The characters . and § are valid but are generally reserved
for use hy system software.

5.3 STATEMENTS

A PAL source program is composed of a sequence of statements, each on
a single 1line terminated by a carriage return/line feed (CR/LF) or
carriage return/form feed comhination.

NOTE

Since the carriage return is a required
statement terminator, the Assembler
inserts a carriage return before any
line feed or form feed not irmmediately
preceeded by one. If the CAPS-11 Editor
is used to create the source progranm,
any carriage return typed by the user
automatically generates a 1line feed
character.

The statement itself may be composed of as many as four fields which
are identified by their order of appearance and by specific
terminating characters. The four fields are catagorized as:

Label: Operator Operand ;Comment
The label and comment fields are optional. The coperator and operand

fields are interdependent; that is, either one may be omitted
depending upon the contents of the other.

5.3.1 Labhels

A label is a symbolic name created hy the programmer (see Section
5.4.2) to identify the 1location of a statement in the program, It
always occurs first in a statement and must be terminated hv a colon.

1y

[

It is Aassigned the value of the assembly location counter (see Section
5.5.4), which may be either absolute (fixed in memorv independently of
the position of the program) or relocatable (not fixed in memory).
For example, if the current asserbly location is absolute 100(octal),
the statement:

ABCD: MOV A,B

will assiagn the value 100 to the label ABCD; subsequent reference to
ABCD will be to location 100.

In the ahove case if the assemhly location counter were relocatahle,
then the final value of ABCD would be 100 (octal} plus a value assigned
by the Linker when it relocates the code, c¢alled the relocation
factor. (The final value of ABCD would therefore not be known until
link-time. This is explained in Sections 5,6 and 5.8.3 of this
chapter, and in Chapter 6).

More than one label may appear within a label field in which case each
label within the field will have the same value. For example, if the
current location .counter is 100 (octal), the statement:

ABC: $DD¢ Al.T: MOV A B

will assign each of the three labels ARBC, SDD, and A7.7 the value 100
{(the characters $ and . designate that these labels are used in
system software},

A label may be composed of more than six characters, but only the
first six are recoqnized by the Assembler, An error code will be
generated during assembly if two or more labels have the same first
six characters.

5,3.2 Operators

An operator follows the lahel field in a statement and may be an
instruction mnemonic or an assembler directive (the instruction set is
discussed in the PDP-11 PROCESSOR HANDBOOK; Section 5,8 of this
chapter provides information concerning assembler directives). When
the operator is an instruction mnemonic, it specifies an action to be
performed on any operand(s) which follows it., When it is an assembler
directive, the operator specifies a certain function or action to be
performed during the assembhly process.

An operator may be preceded only by labels and may be followed by one
or more operands and/or a comment, An operator is leqgally terminated
by any of the following characters:

g+ - @8- " ' 3 ¥V & , 3

line feed form feed carriage return space tab

(The use of each of these characters will be explained later in the
chapter.) For example:

JHMP BEGIN 1¢(TAB) TERMINATES OPERATOR JMP

MOVeA, B 1@ TERMINATES OPERATOR MOV

When an operator is not followed hy an operand or a comment, it is
terminated by a carriage return followed bv either a line feed or form
feed character.

5.3.3 Operands

An operand is that part of the statement which is acted upon by the
operator and may be a symhol, expression, or number, Multiple
operands are separated from one another by a comma. For example:

LABEL: MOV RBsR1 JTHIS IS5 A COMMENT

The space between MOV and RO terminates the operator field (MOV)} and
beqins the operand field; the comma separates the operands RO and Rl.
When the operand field is not followed by a comment, it is terminated
by a carriage return followed hy a line feed or form feed character.
An operand is separated from a comment by a semi-colon.

5.3.4 Comments

The comment field is optional and may contain any ASCII character
except null or rubout; all other characters are ignored by the
Assemhler when used in the comment field.

The comment field may be preceded by any or all of the other three
fields, or it may be on a 1line by itself, It must begin with a
semicolon and end with a carriage return followed by a line feed or
form feed character. For example:

LABEL: CLR HERE JTHIS IS A COMMENT

Comments do not affect assembly processing or program execution, but
are useful in program listings for later analysis, checkout or
documentation purposes.

5.3.5 Format Control

The format of an assembly listing is controlled by the space and tab
characters. These characters have no effect on the assembly process
of the source program unless they are embedded within a symbol,
number, or ASCIT text, or unless they are used as the operator field
terminator. They are generally used in the source program to provide
a neat readable listing. For example, a staterment can be written:

LABEL:MOV(S5P)+,TAG: POP VALUE OFF STACK

This statement is correct and will assemble properly. However, using
the format control characters it can also be written:

vr

N

LABEL: MOV ¢SPY+,TAG 3 POP VALUE OFF STACK
which is much easier to read.

Page size is controlled by the form feed character (CTRL/L). A page
of n lines is created by inserting a form feed after the nth line. If
no form feed is present, the Assembler automatically terminates a page
after 56 lines of text.

5.4 SYMBOLS

A symbol is a string of alphanumeric characters and may be any length.
However, the Assembler only recognizes the first six characters; thus
symbols which contain the same first six characters are considered
identical. There are two types of symbols, permanent and
user-defined.

5.4,1 Permanent Syrbols

The Assembler contains a table (called its permanent symbol table)
which 1lists the svmbols for all instruction mnemonics and assembler
directives. 'The value of a permanent symhol is unique and independent
of the program's position in memory. That is, its wvalue is fixed and
need not be redefined by the programmer. Appendix B provides a list
of all permanent svrbols in the CAPS~11 Assembler,

5.4.,2 TUser-Defined Symbols

All symbols not already defined in the Assembler {and therefore
represented in its permanent symbol table) must be defined by the
programmer within the source program. These user-defined symbols are
those either designated as labels or created bv direct assignment (as
explained in the next section). User=-defined svmbols are added to the
permanent symhol table as thev are encountered during the first pass
of the assemhlv; they may be composed of alphanumeric characters,
dollar signs, and periocds only (again $'s and .'s are usually reserved
for system software). Any other characters are illegal and, if wused,
will result in an error message. The following rules also apply to
user-defined svmbols:

1. The first character must not be a number.

2. EFach svmhbol must he unique within the first six characters,
A symbol may be written with more than six characters but
the seventh and subsequent characters are only checked for
legality and are not otherwise recognized by the Assembler,

3. Spaces and tabs must not be imbedded within a symbol.

A user-defined symbol may duplicate a permanent symbol; the value
associated with it depends upon its use as follows:

l, A permanent syrhol encountered 1in the operator field is
always assigned its pre-~defined value.

2. A permanent symbhol encountered in the operand field is
assigned 1its pre-defined value unless this value has been
re=-defined by the user; in that case, it 1is assigned the
user-defined value.

User-defined symbols mav be of two tvpes--global or internal. Global
symbols are used to provide 1links between object modules and are
explicitly specified as globhal using a special assermhler directive
{see Section 5.8.2). A global symbol may be defined by the user (by
either direct assignment or as a label)}, in which case it is called an
entry symbol or entry point; such symbols may be referenced by other
assemblies or ohject modules. A glohal symbol which is not defined in
the current assembly is called an external symbol and must be defined
{as an entry symbol) in another assembly.

All other user-defined symhols are termed internal; these symbols are
referenced only from within the current assembly.

Under an BK system, the Assembler provides space in its symbol table
for approximately 240 user-defined symbols; a 12K system has room for
approximately 880 user-defined svmbols, and a 16K {or greater) system
allows more than 2000 user-defined symbols.

5.4.3 Directly Assigning Values to Symbols
A direct assignment statement assigns a value to a symbol, The
newly-defined symbol is then added to the Assembler's permanent symbol
table; no word is reserved at the address where the definition occurs.
The format of the statement is:

SYMBOL=EXPRESSION

where the expression is another symhol, numeric value, operator, or
other expression as defined in Section 5.5.

The following conventions apply:

l. An equal sign (=) must separate the symhol from tie
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment,

3. Only one syrmhbol may be defined by any one direct assignment
statement,
Examples of direct assignment staterments follow:

A=1 3THE SYMBOL A IS EQUATED
3WITH THE VALUE 1

£y

(r

B='A-1&4MASKLOW JTHE SYMBOL B 1S EQUATED WITH THE
}JVALUE OF THE EXPRESSION (*A-1&vASKLOW)

c: D=3 3THE SYMBOL D IS EGUATED WITH

E: MOV #1,ABLE JTHE VALUE 3. (SINCE NO WORD IS
3 RESERVED, LABELS € AND E ARE
3BOTH EQUATED WITH THE NUMERI CAL
JMEMORY ADDRESS OF THE MOV COoMMAND)

A symbol may be redefined by assigning it a new value; the new value
will replace the old wvalue in the permanent symbol table.

NOTE

If the defining expression is a global
symbol, the defined syvmbol will not he
global unless it has previously been
defined as such (see Section 5.5).

Only one level of forward referencing is allowed in a direct
assignment staterment. That is, the following arrangerment is illegal:

Xay
Y=Z
Z=300

In a case such as this, X and Y will both be undefined throughout pass
1 of the assermbly and will be listed as such at the end of that pass.
Y will bhe defined during pass 2, but X will remain undefined
throughout that pass and will generate an error message following the
pass.

A svmbol is relocatable or absolute depending upon the mode of the
defining expression., Section 5.5.5 explains how to determine the mode
of an expression.

5.4.4 Register Symbols

The eight general registers of the PDP=-11 are numbered 0 through 7.
The programmer may assiagn symbolic names to these registers and
thereafter reference them as symbols.

A register symbol is defined by means of a direct assignment statement
where the defining expression contains at least one term {that is,
symbol or numeric walue) preceded by a % sign, cor at least one term
(symbol or numeric value} previously defined as a register symbol, 1In
addition, the defining expression of a reqgister symhol must be
absolute. For example:

RO=%8 }DEFINE R@ A5 REGI STER B

R3=R0O+3 3DEFINE R3 AS REGISTER @ + 3

R4=1+2%3 3DEFINE R4 AS REGISTER 3 + |
THERE=X2 3DEFINE "THERE"™ AS REGISTER 2

It is important to note that all register symbols must be defined
before they may be referenced. Any reference to an undefined register
symbol will generally cause errors,

After a register symbol has been defined, any expression containing a
¥ sign indicates a reference to a register; such an expression is
called a register expression. Thus, the statement:

CLR Z6

indicates that register 6 will be cleared, while:
CLR 6

will clear the word at memory address 6,

In certain cases a register can be referenced without the use of a

register symbol or register expression. These cases are recognized
through the context of the statement and are explained in Sections
5.7.13 and 5.7.14.

5.5 EXPRESSIONS

Expressions are formed by the combination of terms. Terms may be
symbols, numbers, ASCII data, or the present value of the assembly
location counter (as represented by the special character, period) and
are joined to one another by logical or arithmetic operators. A
single term may form an expression, or several terms may be combined
by operators to make up the expression. (Symhols have already been
explained; the remaining terms are covered in this section,)

Expressions are evaluated by the Assembler from left to right and are
assigned word locations; parenthetical grouping is not allowed. The
evaluation of an expression includes the evaluation of the mode of the
resultant expression (i.e., abhsolute, relocatahle, or external; see
Section 5.5.5.)

In evaluating expressions, the Assembler will interpret the following
illegal conditions as indicated:

1. A nmnmissing term, expression or external svmbol will be
interpreted as 0. For example:

A+~ 100 3 OPERAND MISSING
will he evaluated as A+0-100.
2. A missing operator will be interpreted as + . For example:
TAG ! LA 177777 3O0PERATOR MISSING

will be evaluated as TAG ! LA+177777; an error code will be
printed.

5-10

1]

v

3., The value of an external expression (one which contains a
symbol not defined in the current program) will be the wvalue
of only the absolute part of the expression; e.g., EXT+A will
have a wvalue of A. (This is later modified by the Linker,
after program relocation and linking is complete, to become
EXT+A,)}

5.5.1 Arithmetic and Logical Operators
An operator is a svmbol which indicates an action (or operation) to be
performed. Two arithmetic and two logical operators are used by the
CAPS-11 Asseribler. The arithmetic operators are:

+ indicates addition or a positive number

- indicates subtraction or a negative number
The logical operators are:

& indicates the logical AND operation

! indicates the logical inclusive OR operation

The logical operators cause bit by bit comparisons (between two 1l6-bit
words) to be performed with the following results:

AND OR
0 & 0 = 0 o ! 0 = 0
0 &« 1 = 0 o ! 1 =1
l & 0 = 0 1 @@ 0 =1
1 & 1 =1 1 ! 1 =1

5.5.,2 Numbers

A number is any sequence of diqgits delimited by the termination
characters discussed in Section 5.2, The Assemhler accepts numbhers
indicated in both octal and decimal bases. Octal numbers consist of
the digits 0 through 7 only:; decimal numbers consist of the digits 0
through 9 followed by a rdecimal point. (If a number contains an 8 or
9 and is not followed by a decimal point, an error code will be
printed and the number will be interpreted hy the Assembler as
decimal.) A number which is preceded by a minus sion is interpreted as
a negative numher (thus it is not necessary to express a negative
number in its two's corplement form}; positive numbers may be preceded
by a plus sign although this is not required.

If a number is too large to fit into 16 bits, the number is truncated
from the left and an error code is printed in the assembly listing.
Numhbers and generated data are always considered as absolute
quantities.

5.5.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, line feed, or form feed) is assigned its
7=bit ASCII value (see Appendix A for a chart containing ASCII codes).
For example:

A
assigns the ASCII character A the value 000101 {octal).

When two ASCII characters are preceded by a guotation mark, (again the
characters must not be null, rubout, carriage return, line feed, or
form feed) they are both assigned their corresponding 7-bit ASCII
values; each 7-hit value is stored in an 8-bit byte and the bytes are
combined to form a word. For example, "AB will store the ASCII value
of A in the low-order {even) byte and the value of B in the high-order
{odd) byte, as follows:

High-Order Byte Low=0rder Byte
[}
B's value= 1 0 2 : 1 0 1 =A's value
NN TN T -~
0 100 001 aol 000 001
- N — s
0 4 1 1 0 1
|

"AB=041101

ASCII text is always considered absolute hy the Assembler.

5.5.4 Assembly Location Counter
As assemhly proceeds, consecutive memory Jlocations are assigned to
each byte of object data generated. Thus, each word of object data is
normally assigned even consecutive locations.
The special character period (.} 1is the symbol for the assembly
location counter; when wused in the operand field following an
instruction, a period represents the address of the first word of the
instruction,
NOTE

The assembly location counter is not the

same as the Program Counter as described

in Section 5.7.

For example, assume the following statement occurs at location 502:

Az MOV #.,RO

5-12

The period refers to location 502, that is, the address of the MOV

instruction, When used in the operand field following an assembler
directive (see Section 5.8), the period represents the address of the
current byte or word. Assume the following statement occurs at

location 450:
.BYTE 73)-}ADR
In this case, the period refers to location 451,

The Assembler clears the location counter at the beginning of each
assembly pass. Information 1is then normally stored in consecutive
memory locations heginninag at location 0 for relocatabhle sections, and
wherever the programmer indicates for absolute sections. The user may
at any time change the location where the chject data is to be stored
hy a direct assignment statement of the form:

+=EXPRESSION

The expression defining the location counter must not contain forward
references or symbols that wvary from one pass to another,

In the following exarmple the prograrmmer uses LASECT and LCSECT
directives, which designate that code will be assigned either absolute
or relocatable locations. These directives are explained in detail in
Section 5.8.3.

+ASECT
«=500 3 SET LOCATION COUNTER TO ABSOLUTE 508

FIRST: MOV .+10,COUNT 3THE LABEL FIRST HAS THE VALUE 598(8)
J.+10 EQUALS S18(8)» THE CONTENTS OF
;LOCATION S1B¢8) WILL BE DEPOSITED IN
FLOCATI On COUNT.

« =520 3THE ASSEMBLY LOCATION COWNTER NOW
JHAS A VALUE OF ABSOLUTE 528(8).
SECOND: MOV .,INDEX JTHE LABEL SECOND HAS THE VALUE 52B(8).

BJTHE CONTENTS OF LOCATION 520(8), THAT
31S, THE BINARY CODE FOR THE INSTRUCTION
JITSELF, WILL BE DEPOSITED IN LOCATION

3} INDEX
« CSECT
= +20 3SET LOCATION COUNTER TO RELQCATABLE 20.
THIRD: .WORD @ 3THE LABEL THIRD HAS THE VALUE OF
3} RELOCATABLE 20 (DETERMINED BY THE
JLINKER) .
Storage area mav he reserved by advancing tiie location counter. For

example, 1if the current wvalue of the location counter is 1000, the
direct assignment statement:

.=+ 100

will reserve 100(8) bvtes of storage space in the program, The next
instruction will be stored at 1100,

5-13

Similar to other symbols, the assembly location counter has a mode
associated with it, The mode is deternined by the mode of the section
in which it appears (absolute or relocatable). This mpode cannot be
changed by using a defining expression of a different mode. However,
it may be changed by chanaging the mode of the section using either the
LASECT or LCSECT directives as explained in Section 5,8.3. The mode
cannot at any time be external.

5.5.5 Modes of Expressions

As already mentioned, expressions consist of a term or the combination
of terms (terms being any symbol, number, ASCII data, or the value of
the current location counter). Just as each term of the expression
can be assigned a mode (ahsolute, relocatable, or external), the mode
of the expression itself may be determined as follows:

An absolute expression is defined as:

1. An absolute term preceded optiocnally hy a single arithmetic
operator, or

2. A relocatable expression minus a relocatable term, or

3. An absolute expression followed by an operator followed by an
absolute expression.

A relocatable expression is defined as:
l. A relocatahble term, or

2, A relocatable expression followed by an arithmetic operator
followed by an absolute expression, or

3. An absolute expression followed by a plus operator followed
by a relocatable expression.

An external expression is defined as:
l. An external term, or

2. An external expression followed by an arithmetic operator
followed by an absolute term, or

3. An absolute expression followed bv a plus operator followed
by an external expression.

In the following examples ABS represents an absolute term, REL
represents a relocatable term, and EXT represents an external term.
Thus, these are valid expressions:

EXT+ABS s EXTERNAL EXPRESSION
REL+REL-REL ; RELOCATARBLE EXPRESSION
ABS+REL-REL&ABS s ABSOLUTE EXPRESSION

The following are illegal expressions (and cannot be handled properly
by the Linker):

EXT+REL
REL+REL
ABS=-EXT

5.6 RELOCATION AND LINKING

The output of the Assemhler is a relocatable object module which must
be processed by the Linker before it can be loaded and executed. The
object module contains the assembled binary output of absolute,
relocatable, and external expressions. Since absolute expressions are
fixed in memory, the Linker does no manipulation. However, the values
of external or relocatable expressions must be fixed {or made
abhsclute) hy the Linker before it can create the locad module which
will contain the binary data to actually be loaded and executed,

To enable the Linker to fix the wvalue of an expression, the Assembler
must pass certain information concerning the expression on to the
Linker, For example, each relocatable section of code in the source
program has been assermbled sequentially with the Ffirst section
beginning at location 0 (called relocatahle 0); thus each relocatable
expression is a relative number of locations from 0. (This
value--relocatable n--and other information is passed to the Linker by
means of the Global Symbol Pirectory and the Relocation Directory, as
described in Sectieon 5.14.) When the Linker relocates the section of
code, it adds the relocatable value of the expression as provided by
the Assemhler to the base (or beginning location of the section after
relocation) thereby producing an absolute value for the expression.,

In the case of an external expression, the wvalue of the external
symbol in the expression is determined by the Linker (since the
external symbol must he defined in one of the other object modules
being linked) and this wvalue is then added to the value of the
external expression provided by the Assembler (see Section 5.5, #3).

All instructions that are to he modified by the Linker in this manner
will hbhe marked by a =single apostrophe in the assembly listing, as
illustrated in the following examples:

PO50553 CLR EXTERNAL(S) i VALUE OF EXTERNAL SYMBOL
poveee’ 515 ASSUMED TO BE ZERO, WILL
3BE MODIFLED BY THE LINKER
P85865 CLR EXTERNAL+6¢5) 3VALUE OF EXTERNAL SYMBOL
202096" 3 CASSUMED ZERO)Y + 6 WILL BE

sMODIFIED BY THE LINKER

p95065 CLR RELOCATABLE(S) 3ASSUME CODE IS5 I[N AN

P00 40° 3ABSOLUTE SECTION AND
3 VALUE OF RELOCATABLE SYMBOL
315 RELOCATABLE 4@

5.7 ADDRESSING MODES

The eight general registers mav be used for storing and manipulating
data. Accessing these registers 1is done by means of register
addressing modes. In order to understand how the addressing modes
operate and how they are assembled, the action of the Program Counter
must be understcod. The Progran Counter (register 7 of the eight
general registers) alwavs contains the address of the next word to be
fetched; i.e., either the address of the next instruction to be
executed, or the address of the second or third word of the current
instruction. The key rule is:

Whenever the processor implicitly uses
the Program Counter (PC) to fetch a word
from memory, the Program Counter is
automatically incremented by two after
the fetch.

That is, when an instruction is fetched, the PC is incremented by two
so that it is pointing to the next word in memory.

The following conventions are used in explaining the addressing modes:
1. E represents any expression as defined in Section 5.5,

2. R represents a register expression. This is any expression
containing a term preceded by a & character or a symbol
previously equated to such a term, as explained in Section
5.4.4.

3. FER represents: a) a register expression as explained in 2
above, or h) an expression in the range 0 to 7 inclusive,

4. 2 represents a general address specification which produces a
6=-bit mode address field (source or destination address) as
described in the PDP-11 PROCESSOR HANDBOOK under the sections
entitled Single Overand Addressing and Double Operand
Addressing.

Addressing modes for general registers 0-6 will be described first and
then addressing using the Program Counter (register 7). The format
for the addressing specification, A, is explained in terms of E, R,
and ER as defined above. PFach will be illustrated with the single
operand instruction CLR or double operand instruction MOV. (The user
may also refer to the PDP-11 PRNOCESSOR HANDBOOK for information
concerning addressing modes.)

5.7.1 Register Mode (llode 0)

The register contains the operand.
Format: R
Example:

R@=X0 3DEFINE RG AS REGISTER 0
CLR R9 3} CLEAR REGISTER 9

5-16

5.7.2 Deferred Register Mode (Mode 1)

The register contains the address of the operand.

Format: @R or (ER)

Example s
CLR ©R} 3} CLEAR THE WORD AT THE
or 3 ADDRESS CONTAINED IN
CLR 1) 3 REGISTER 1

5.7.3 Autoincrement Mode (FMode 2)

The contents of the redgister are increnented immediately after
used as the address of the operand.

Format: (ER}+

Exanples:

CLR C(RD)+ 3 CLEAR WORDS AT ADDRESSES
CLR (R@3+3)+ 3 CONTAINED IN REGI STERS 8.3,
CLR (2)+ 3AND 2, AND INCREMENT THE

3sCONTENTS OF EACH OF THESE
3 REGI STERS BY TWO.

HNOTFE

Both JIMP and JSR instructions using mode
2 increment the register hefore its use
on the PDP-11/20 and 11/40 (but not on
the PDP-11/05, 11/10, or 11/45).

In double operand instructions of the
addressing form &R,(R)+ (or %R,=-(R))

where the source and destination
registers are the same, the source
operand is evaluated as the
autoincremented (or autodecremented)

value, bhut the destination register, at
the time it is usecdd, still contains the
originally intended effective address.
In the following two exarnples, as
cxecuted on the PDP-11/20 and 11/40, RO
originally contains 100,

MOV R@, (D) + }THE QUANTITY 182 15
JMOVED TO LOCATI ON 102

MOV RO,-(@) sTHE QUANTITY 76 IS
3MOVED TO LOCATION 76

The PDP=-11/05, 11/10, and 11/45 handle
these instructions as follows:

being

MOV R@, (8 + 3THE QUANTITY 182 IS
3MOVED TO LOCATION 1089

MOV R@,-(B 3THE QUANTITY 108 IS
3MOVED TO LOCATION 76

The use of these forms should be avoided

as they are not compatible among PDP-11
Processors.

5.7.4 Deferred Autoincrement Mode {(mode 3)

The register is used as a pointer to the address of the operand.
centents of the register are incremented after being used,

Format: A(ER}+
Example:
CLR @(3)+ JCONTENTS OF REGISTER 3 POINT
1TO ADDRESS OF WORD TO BE

JCLEAREDs, CONTENTS OF REGISTER
33 ARE THEN INCREMENTED BY 2

5.7.5 Autodecrement Mode (Mode 4)

The contents of the reqister are decremented before being used as

address of the operand (see note in Section 5.7.1).
Format: =(ER)

Examples:

CLR =-(RO 3DECREMENT CONTENTS OF REGI STERS
CLR -(RO+3) 30, 3 AND 2 BEFORE USING CONTENTS
CLR =-{2) 3 AS ADDRESSES OF WORDS TO BE CLEARED

5.7.6 Deferred Autodecrement Mode (Mode 5)

The contents of the register are decremented hefore being used
pointer to the address of the operand.

Format: @~ (ER)

Example:

CLR @-(2) JDECREMENT CONTENTS OF REGISTER 2

3 BEFORE USING CONTENTS AS POINTER TO

3 ADDRESS OF WORD TO BE CLEARED

5

18

The

the

i

P

5.7.7 Index Mode (Mode 6}

The contents of the register (ER) and the value of the expression E
are summed to form the address of the operand. The wvalue of the
expression E is stored as the second or third word of the instruction
and is called the base, The processor uses the Program Counter to
fetch the base from memory; the PC is then incremented by two and
points to the next word,

Format: E(ER)

Examples:

CLR X+2(R1) 3EFFECTIVE ADDRESS IS X+2 PLUS
3THE CONTENTS OF REGI STER 1

CLR -2(3 JEFFECTIVE ADDRESS IS -2 PLUS
3THE CONTENTS OF REGISTER 3

5.7.8 Deferred Index Mode (Mode 7)

The value produced when the expression and the contents of the
register are added is a pointer to the address of the operand,

Format: @QE(ER)
Example:
CLR @14C4) 31F REGISTER 4 CONTAINS 180, AND

JLOCATION 114 CONTAINS 28920, LOC.
32008 15 CLEARED

ADDRESSING USING REGISTER 7 (PC)

Although Register 7 serves as the Program Counter, it may also be used
as a general purpose register, The PC responds to all the standard
PpP-11 addressing modes; however four of these modes are especially

useful when writing Position Independent Code (explained in Section
5.9); these are summarized helow.

5.7.9 Immediate Mode (mode 2)
Immediate mode allows the operand itself to be stored as the second or
third word of the instruction., It is assembled as an autoincrement of
register 7.

Format: #E

Examples:

MOV #188,R3 3MOVE AN OCTAL 100 TO REGISTER 3

5

19

MOV #X,R@ }MOVE THE VALUE OF SYMBOL X TO
}REGI STER @

An explanation of this mode follows. Using the first example above,
the statement MOV #100,R3 assembles as two words; these are:

012703
000100

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction (012703). The processor fetches
this word and increments the PC bv two, Since the source operand mode
is 27 (autoincrement the PC), the PC is used as a pointer to fetch the
operand (the second word of the MOV instruction, 000100). The PC is
then incremented by twe to point to the next instruction.

5.7.10 Absolute Mode (Mode 3)
In absolute (or deferred immediate) mode, the expression specifies an
absolute address; the second word of the instruction contains the
address of the operand. Ahsolute mode is assembled as a deferred
autoincrement of register 7.

Format: @#F

Examples:

MOV @#243,R3 SMOVE CONTENTS OF LOCATION
3240 TO REGISTER 3

CLR &#X 3 CLEAR THE CONTENTS OF THE
JLOCATION WHOSE ADDRESS IS5 X

5.7.11 Relative Mode (Mode 6)

Relative mode is assembled as index mode using register 7 and is the
normal mode for memory references.

Format: E

Examples:

CLR tve JCLEAR LOCATION 188

MOV X, Y SMOVE CONTENTS OF LOCATION
BX TO LOCATION Y

The base of the address calculation, which is stored in the second or
third word of the instruction, is not the address of the operand.
Rather, it is the number which, when added to the PC, bhecomes the
address of the operand. Thus, the base is this address - PC, and is
called an offset. The operation is explained as follows:

5-20

fy

If the statement MOV 100,R3 is assembled at absolute lecation 20, then
the assembled cocde is:

Location 20 016703
Location 22 nooons4

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67 (indexed
by the PC). To pick up the base, the processor fetches the word
pointed to by the PC (location 22); the PC is then incremented by two
and points to location 24. To calculate the address of the source
operand, the lase is added to the updated PC. Thus,
base+PC=54+24=100, the operand address.

Since the Assembler considers the assemhbly location counter (.) as the
address of the first word of the instruction, an equivalent index mode
statement would hbe:

MOV 198-.-4(PC)»R3

This mode is called relative because the the operand address is
calculated relative to the current PC., The base is the distance or
of fset (in bytes) between the operand and the current PC, If the
operator and 1its operand are moved in memory so that the distance
between the operator and data remains constant, the instruction will
ocperate correctly anywhere in memory.

5.7.12 Deferred Relative Mode (Mode 7)

Deferred relative mode is indicated when the expression is preceded by
@; the expression's wvalue 1is the pointer to the address of the
operand.

Format: Q&
Examples:

CLR @Al 3 ADD SECOND WORD OF INSTRUCTION
$TO THE PC TO OBTAIN A POINTER TO
$ THE ADDRESS OF THE OPERAMD,

3 CLEAR OPERAND

MOV @X,RP $MOVE THE CONTENTS OF THE
SLOCATION WHOSE ADDRESS IS IN X
3INTO REGISTER @

5.7.13 Table of Mode Forms and Codes

Table 5-2 summarizes the addressing modes, Each instruction assembles
as at least one word. Operands of the first six forms listed below do
not increase the length of an instruction., Each operand in one of the
other modes, however, increases the instruction length by one word (n
represents the register).

Table 5-2
Mode Forms and Codes

Form

Mode

Meaning

R

2R or (ER)
(ER) +
@(ER) +

- (ER)
e-(ER)

{Instruction

E(ER)
€E(ER)
$E
Q4E

E
30

on
1n
2n
3n
4n
5n

{Instruction length is not increased)

Register

Register deferred
Autoincrement
Autoincrement deferred
Autodecrement
Autodecrement deferred

length increased by one word)

én
n

Index

Index deferred

Immediate

Absolute memory reference
Relative

Relative deferred reference

An alternat

e form for @R |is

NOTE

(ER) .

However, the form @(ER) is equivalent to

@0 (ER) .

The form €@#E differs from the form E in

that the
instruction
address

and the P
100 even

from the p
assembled,

The Assembler is not particular about left and right
The following are some examples of

and - signs in

second
contains the
of the operand rather than the
relative distance

C.

oint

address fields.
incorrect user syntax that will assemble as shown

Thus, the
CLR @#100 will clear
if the

or third word of the
absolute

between the operand
instruction

absolute location
instruction is moved
at which it was

indication, (X and Y are l6-bit address offsets):

Form
{rR2)X
X-(R2)
X{R2)+
+(R2)
(R2)-
@(R2)X
X(R2)+Y

Asserbles As:

X{R2)

X{R2) or X~Q(R2)
X (R2)

(R2) +

-{R2)

@X(R2)

X+Y (R2)

without any

and dangling +

error

'

[

5.7.14 Instruction Forms

Instruction mnemonics are detailed in the PDP=11 PROCESSOR HANDBOOK
and summarized in Appendix B. This section defines the number and
nature of the operand fields for these instructions. In the table
that follows, let R, E, and ER represent expressions as defined in
Sections 5.5 and 5.7; let OPR represent the operator; let A be a 6-bit
address specification in one of these forms:

B ar =({ER) @- (¥R}
R AR or (R) E(ER) A% (KR)
(ER) + @ (LR)+ 39 R#F
Table 5-3
Instruction Operand Fields
Instruction Form Example
Douhle Operand OPR ALA MOV (R6) +,@Y
Single Operand OPR A CLR = (R2)
Operate OPR HALT
Branch OPR E BR X+2
where ~12B<{L-.-2}/2<=127 BLD .-4
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return RTS& ER RTS PC
EMT/TRAP OPR or CPR E EMT
where 0<=E<=377{octal) EMT 31

Branch instructions are one word instructions. The high byte contains
the op code and the low byte contains an B-=hit siqned offset (7 bits
plus sign) which specifies the branch address relative to the PC, The
hardware calculates the Liranch address as follows:

1. The sign of the offset is extended through bits 8-15,

2, The result is multiplied by 2:; this creates a word offset
rather than a byte offset.

3. The result is added to the PC to form the final branch
address,

The Assembler performs the reverse operation to form the byte offset
from the specified address. When the offsect is added to the PC, the
PC is pointing to the word following the branch instruction, hence the
factor -2 in the calculation.

fl

Bvte offset {E=PC) /2 truncated to eight bits.
Since PC=,+2, the

Bvte offset (E=-.-2)/2 truncated to eight bits.

NOTE

It is illegal to branch to a location
specified as an external svmbol, or to a
relocatable symhol when within an
absolute section, or to an absolute
symbol when within a relocatable
section.

The EMT and TRAP instructions do not use the low-order byte of the
word, This allows information to be transferred to the trap handlers
in the low-order byte. If ENT or TRAP is followed by an expression,
the value is put into the low-order bvte of the word. However, if the
expression is too big (377 (octal)) it is truncated to eight bits and
an error code is printed.

The prograrmmer should not try to micro-program the condition code
operators (see Appendix B) as the CAPS=1l Assembler does not support
this capability. Thus:

cLCiCLV

results in an error message and the statement is assembled as CLC.

However, expressions allow logical operators and the use of

instruction mnemonics. Thus, the following words are correctly
written:
«WORD CLG! 1 OPERAND OF «WORD DIRECTIVE
(see Section 5.8.7)
+CLCICLV 1 OPERAND OF DEFAULT .WwWORD
ICLCICLY 1 OPERAND OF DEFAULT .WORD

5.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the assembly
process and may generate data. Directives may be preceded by a label
and may be followed by a comment, The assembler directive occupies
the operator field and only one directive may be placed in any one
statement. A directive and its operand should be separated by a space
or other legal terminator. Operands which are used with directives
vary and are discussed individually.

5.8.1 .TITLE

The ,TITLE directive is used to name the object module, The name is
assigned by the first symbol following the directive, If there is no
.TITLE statement the default name assigned is ", MAIN.". Thus:

+TITLE
FILEl: MOV #NAME,R9

assigns the name FILEl to the current object module.

ir

5.8.2 .GLOBL

The .GLOBL directive is used to declare a symhol as being global. A
global symbol is generally referenced by more than one ohject module.
It may be an entry symbol, in which case it is defined in the current
program, or it may be an external svmbol, in which case it is defined
in another program which will be linked with the current program by
the Linker. The form of the .GLOBL directive is:

.GLOBL NAMA,NAME,...,NAMN

where symbols NAMA,NAMB,...NAMN are all defined as global symbols.

NOTE

A symbol cannot bhe declared global by
defining it as a globhal expression in a
direct assignment statement,

If an illegal character is detected in the operand field of a .GLOBL
statement an error message 1is not generated hut the Assembler may
ignore the remainder of the statement. Thus:

.GLOBL As,B,8C,D
assembles without error as:

.GLOBL A.B

5.8.3 Program Section Directives {.ASECT and .CSECT)}

The relocatable Assembler provides two directives enabling the
programmer to specify that parts of his program he assembled in
absolute sections and other parts in relocatahle sections. The scope
of each directive extends until a directive to the contrary is given,
The Assembler initially starts in a relocatable section; to enter an
ahsolute section, the J(ASECT directive is indicated, Thus, if the
first statement of a program is:

Al « ASECT

the label "A" would be a relocatable symbol which is assigned the
value of relocatahle =zero. The Linker will later calculate the
absolute value of A by adding the value of the hase of the relocatable
section., For exarmple:

« ASECT J ASSEMBLER IN ABSOLUTE SECTION
«3108e JPC=1000 ABSOLUTE
A CLR X JA= 1000 ABSOLUTE
« CSECT JASSEMBLE IN RELOCATABLE SECTION
X: JMP A JX=@ RELOCATABLE
« END

The prograrmer may alternate between relocatable and absolute sections
as follows:

« CSECT

«WORD @,1,2 3} ASSEMBLED AT RELOCATABLE 8. 2, AND 4
«ASECT

+«WORD 9,.1,2, 3} ASSEMBLED AT ABSOLUTE @, 2, AND 4

+ CSECT

«WORD O 3 ASSEMBLED AT RELOCATABLE &

« END

If a label is defined twice, first in an absolute section and then in
a relocatable section, the symbol will be relocatable but its value
will be as defined in the ahscolute section.

Chapter 6 provides details concerning how the Linker handles absolute
and relocatable program sections at link-time,

NOTE

The CAPS-11 Assembler provides the LEOT
directive for the user who may wish to
write a program for execution under
another system allowing the use of paper
tape. For that reason, it is described
here, although the average CAPS-11 user
will have no need to reference it and
the CAPS-11 Assembler will ignore it,
The following discussion of the (EOT
directive details its use as it pertains
to the Papertape Software System.

The .EOT directive indicates the physical End Of Tape though not the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop bhefore the end of the tape. Either case is proper; even
though it may appear as though the Assembler has read too far, it
actually has not.

If .EOT is embedded in a tape, and more information to be assembled
follows it, .EQT must be immediately followed bv at least two line
feeds or form feeds., Otherwise, the first 1line following the .EOT
will be lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physicallv separate tapes to be assembled as
one program, The last tape should be terminated bv a LEND directive
(see Section 5.,8.6) but may be terminated with .EOQT.

5.8.5 LJ.EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.,

"

5.8.6 .LiD

The .END directive indicates the 1logical and physical end of the
source progran, The L,END directive may be followed by only one
operand-~an expression indicating the program's transfer address. At
load time, the load module will be loaded and program execution will
begin at the transfer address indicated by the .END directive. If the
address 1is not specified and a RUN or LOAD/G command is used, a fatal
error message will he printed; if a LOAD/O command is used, CABLDR
will halt and expect user console action (see Appendix E)}; a LOAD
command in conjuction with the START command allows the user to
indicate an optional starting address for the program.

If there is no ,END directive in the wuser's program, the Assembler
will issue the message:

N0 END STMT

at the end of the last input file and will continue as if there had
bheen an .END statement there.

5.8.7 LWORD

The .WORD assembler directive may he followed by a space and one or
more operands separated by commas and instructs the Assembler to store
each operand in successive words of the object program. the operands
may be any legally formed expression. For example:

21420

SAL=@

«WORD 177535, .+4, SAL $ STORED IN WORDS 1422, 1422
JAND 1424 WILL BE 177535,
31426 AND @

Values exceeding 16 bits will be truncated from the 1left to word
length.

A .WORD directive followed by one or more void operands separated by
commas will store zeros for these operands. For example:

«=1430 3ZERO, FIVE, AND ZERO ARE STORED
«WORD .5, JIN WORDS 143@, 1432, AND 1434

If a staterment contains no operatcor, this field will be interpreted as
a JWORD directive providing the operand field contains one or more
expressions. The first term of the first expression in the operand
field must not be an instruction memonic or assemhler directive
unless preceded hy a + or =. or one of the logical operators, ! or &,
For example:

+= 440 3THE OP=CODE FOR MOV (210208
LABEL: +MOV,LABEL 315 STORED IN LOCATION 448.
3449 15 STORED IN LOCATION 442,

Note that the default .WORD directive will occur whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered in the operator or operand £ield which is not
recognized as an instruction mnemonic or assemhler directive.
Therefore, if an instruction mnemonic or assembler directive 1is
nisspelled, the ,WORD directive is assumed and errors will result,
Assume that MOV is spelled incorrectly as lINDR:

MOR A,B
This will result in two errors caused bv: a) an expression operator

nissing between MOR and A, and b) MOR being undefined. Two words will
be generated; one for MOR A and one for B.

5.8,8 .BYTE

The .BYTE directive may be followed by a space and ohne or mnore
operands separated hv cormas and instructs the Assembler to store each

operand in a bvte of the obhject program. If multiple operands are
specified, they are stored in successive bhytes. The operands may be
any legally formed expression with a result of 8 bits or less. For
example:

SAM=35 sSTORED IN LOCATION 419 WIiLL BE

=410 3860 (THE OCTAL EQUIVALENT OF 48).

«BYTE 48.,5AM JIN 411 WILL BE 885

Since the expression is evaluated as a word expression, if it is found
to have a result of more than 8 bits, it will be truncated to its
low-order 8 bits and an error will be flagged. If an operand after
the .BYTE directive is left void, it will be interpreted as zero. For
example:

« =420 3ZERO WILL BE STORED IN
«BYTE » » JBYTES 420, 421 AND 422.

If the expression is relocatahle, a warning will be printed.

5.8.9 L(ASBCIT

The .ASCII directive translates strings of ASCII characters {with the
exception of null, rubout, carriage return, line feed, and form feed)
into their 7-bhit ASCII codes. The text +to be translated must be
enclosed by a delimiting character which may be any printing ASCII
character except colon and equal sign and those characters used in the
text string itself., The 7~bit ASCII code generated for each character
will be stored in successive bytes of the object program. For
example:

+=500 3 THE ASCII1 CODE FORY Y WILL BE
«ASCII r/YESs JSTORED IN 5080, THE CODE FOR E
JIN 581, THE CODE FOR S IN 5@2.

bx

«ASCII /5+3s2/ 3THE DELIMITING CHARACTER OQCCURS
3 BETWEEN THE OPERANDS. THUS THE ASCII
3 CODES FOR 5» +» AND 3 ARE STORED
3IN BYTES 583, 584, AND 505. 2/ IS
3NOT ASSEMBLED.

The .ASCII directive may be terminated by any legal terminator (as
listed in Section 5.2 #3) except = and :, HNote that if the text
delimiter is also a legal terminator, it may serve a double function,
terminating the directive and delimiting the text., For example:

-ASCITI /sABCD/s 3 THE SPACE IS REQUIRED
$sBECAUSE 7 IS NOT A LEGAL
3 TERMINATOR.

+ ASCI I +ABCD+ JNO SPACE IS5 RE®UIRED
3 SINCE + IS A TERMINATOR.

5.8.10 .RAD50

PDP-11 system programs often handle symbols in a specially coded form
called "RADIX 50" {(sometimes also referred to as "MOD40"). This form
allows 3 characters to be packed inteo 16 bits; therefore, any symbol
can be held in two words. The form of the directive is:

«.RADS® sCCC/

The single operand is entered in the form /CCC/ where the delimiter
(in this case, slash) can be any printable character except = and :
and those characters used in the operand. Characters which may be
converted are A through Z, 0 through 9, dollar {$), dot (.} and space
(). If there are fewer than 3 characters they are left-justified and
trailing spaces are assumed. Any characters following the enclosing
delimiter are ignored and no error results. For example:

«RADSE /ABC/ 3 PACK ABC INTO ONE WORD
«RADS@ /AB/ 3PACK AB (SPACE) INTO ONE WORD
+RADSE s/ 3PACK 3 SPACES INTO ONE WORD

The packing algorithm is as follows:

l. Each character is first translated into its RADIX 50
equivalent as follows:

Character RADIX 50 Equivalent (octal)
(SPACE) 0

A-7 1-32

$ 33

. 34

0-9 36-47

Note that another character can be defined for code 35.

2. The RADIX 50 equivalents for the three characters (Cl, 2,
C3) are then combined as follows:

RESULT=((C1*50)+C2) *50+C3

and the result is stored in the word. For example, the RADIX
50 value of ABC is 3223,

5.8.11 L.LIMIT

The .LIMIT directive generates two words into which the Linker puts
the low and high addresses of the relocated code. The low address
{stored in the first word) is the address of the first byte of
relocated code; the high address is the address of the first free byte
following the relocated code. These addresses will always be even
since all relocatable sections are loaded at even addresses; if a
relocatable section consists of an odd number of bytes the Linker adds
one to the size to make it even.

5,8,12 Listing Control Directives (.LIST and .NLIST)

The .LIST and LHLIST directives allow the user to choose which
sections of his program will appear in the assemhly listing, The
.NLIST directive suppresses the asserbly listing and the (LIST
directive reinitiates it. Thus if the user is developing a program
and has a large section of code which does not change from one edit to
the next, he can insert a .NLIST directive at the beginning of that
code and a .LIST at the end. That code will not appear in the
assembly listing,

If the .NLIST directive is in control when the svmhol table is ready
to be output, the ,NLIST directive will be terminated so that the
symbol table can be listed.

5.8.13 Conditiconal Assembly Directives

Conditional assembly directives provide the programmer with the
capability of conditionally including or not including portions of his
source code in the assembly process. In the explanation which
follows, E denotes an expression. The conditional directives are:

Directive Exgression Result
. IF2 E Assemble if E=(
. IFNZ E Assemble if E#0
«IFL E Assemhle if E<0
« IFLE E Assemble if E<=0
. IFG E Assemble if E>0
« IFGE E Assemhle if E=>0

If the condition is met, all statements following the conditional
directive are assembled until a special delimiting directive, .ENDC,
is encountered. If the condition of the directive is not met, these

———

statements are ignored. When the LENDC directive is detected,
assembly continues as usual.

Two more conditional directives are used; these take the following
form:

« IFDF S5(1) 1,8] S(2) 1,6 ,...1,&18 (M)
LIFNDF S(1) [Yv,&) s{2) [l,&),...['.&)}5(N}

where S(1) though S(N) represent symbols, ! represents the logical OR
operation, and & represents the logical AND operation. ,IFDF and
.IFNDF mean "if defined" and "if undefined" respectively., The scan is
from left to right, no parentheses permitted, Nesting is permitted up
to a depth of 127 (decimal), For example:

. FDF 5!T&8U Assemble the following code (until
detection of .ENDC) if either S or
T is defined and U is defined

.IFNDF T&U!S Assemhle the following code ({until
detection of ,ENDC) if both T and U
are undefined or if S is undefined

General remarks concerning conditional directives include the
following:

1. A null expression or an expression in error use the default
value 0 for purposes of the conditional test.

2., An error in syntax, e.q., a terminator other than ;§ ! & or
CR results in the undefined situation for .IFDF and ,IFNDF,
as does a null symbol or symbol in error.

3. All conditionals must end with the ,EWDC directive. Anything
in the operand field of .ENDC is ignored.

4, Labels are permitted in statements containing conditional
directives; however, since the scan is purely from left to
right, in the following example:

«+IFZ 1
CLR X
At «ENDC

the lahel A will be ignored (as the Assembler ignores all
code between the conditional directive and the ,ENDC
directive), while in this example:

Az +IFZ 1
CLR X
« ENDC
A is entered in the symbol table.
5. If an .END directive is encountered while inside a satisfied

conditional, an error will be flagged; however, the ,END
directive will still he processed normally.

5-31

6, If more than one LEIDC directive 1is encountered (per
conditional directive), errors are flagged on those in
excess,

5.9 WRITING POSITION INDEPENDENT CODE (PIC)

When a standard program is available for use by other programs, it is
often heneficial to be abhle to load and execute the program in
different areas of memory., There are several ways to do this:

1. Reassemhle the program at the desired location,

2. Use a relocating loader which accepts specially coded hinary
ohject modules from the Assembler,

3. Have the program relocate itself after it is loaded.
4, Write code which is position independent.

on small machines, reassemhly is often performed; however, the CAPS-11
System has a relocating loader (Linker; see Chapter &), and this is
preferable. Since it generally is not economical to have a program
relocate itself (as hundreds or thousands of addresses may need
adjustment) , writing position independent code is another method of
producing a relocatable program.

PIC is achieved on the PDP-11 by correct usage of those addressing
maodes which form an effective memory address relative to the Program
Counter (PC). Thus, if an instruction and its object({s) are moved in
such a way that the relative distance hetween them is not altered, the
same offset relative to the PC can be used in all positions in memory.
PIC wusually references locations relative to the current location,
although ahsolute references may be made as long as the locations
referenced remain stationary while the PIC is relocated. For example,
references to interrupt and +trap vectors are absolute, as are
references to device registers in the "external page" (28K to 32K),
and direct references to the general reqgisters.

5.9.1 Position Independent Modes
There are three position independent modes, or forms of instructions:

l, Branches--the conditional branches, as well as the
unconditional branch, BR, are position independent since the
branch address is computed as an offset to the PC (see
Section 5.7.11).

2. Relative Memory References--any relative memory reference of
the form:

CLR X
MOV M, Y
JMP X

T

is position independent because the Assembler assembles the
reference as an offset indexed by the PC, The offsct is the
difference between the referenced locaticn and the PC, For
example, assurme the instruction CLR 200 is at address 100:

128 00858567 $FIRST WORD OF CLR 282
182 020vP1a 1 OFFSET = Z2¢€@-104

The offset is added to the updated PC., (The updated PC has
been incremented by two and contains 104, i.e., the address
of the word following the offset).

Although the form CLR X is position independent, the fom
CLR @X is not, Consider the following:

St CLR ex $ CLEAR LOCATION A
Xz «WORD A :POINTER TO A
A +«WORD 2

The contents of location X are used as the address of the
operand in the location labeled A. Thus, if all of the code
is relocated, the contents of location X muist he altered to
reflect the new address of A. However, if A was the name
associated with some fixed location (e.g., a trap vector or a
device register), then statements S and X would be relocated
and A would remain fixed. The following code 1is position
independent:

A=36 1 ADDRESS OF SECOND WORD
3 OF TRAP VECTOR
51 CLR @X 3 CLEAR LOCATION A
Xt +WORD A JPOINTER TO A

3. Immediate Operands--The Assembler addressing form #E
specifies immediate data, that is, the operand is part of the
instruction {see Section 5.7.9). Thus, immediate data is
position independent and is moved with the instruction,
Immediate data is fetched using the PC in the autoincrement
mode,

As with direct memorv references, the addressing form @#E is
not position independent since the final effective address is

absolute and peints to a fixed location not relative to the
PC,

5.9.2 Abhsolute Modes

Any time a memory location or register is used as a pointer to data,
the reference is ahsolute. If the referenced data is fixed in memory

5

33

independent of the position of the PIC (e.g., trap-interrupt vectors
or device registers), absolute modes must be used, (When the
programmer is not writing position independent code, references to
fixed locations may be performed using either the absolnte or relative
form,.) If the data referenced is relative to the PIC, absolute modes
must not be used unless the pointers involved are modified, The
absolute mocdes are:

ar Location E is a pointer

@$E The inmediate word is a
pointer

(R) The register is a pointer

(R)+ and - (R} The register is a pointer

@(R)+ and @-(R) The reqgister points to a
pointer

E(R) R=6 or 7 The base, E, modified by (R)
is the address of the operand

@E{R) The base, modified by (R}, is

a pointer

The non-deferred index modes and stack operations require a 1little
clarification. As described in Sections 5.7.11 and 5.9.1, the form
E(7) is the normal mode to reference memory and is a relative mode.
Index mode, using a stack pointer (SP or other register) is also a
relative mode and may bhe used conveniently in PIC, Basically, the
stack pointer points to a dynamic storage area and index mode is used
to access data relative to the pointer, The stack pointer may be
initially set up by a position independent program as shown in Section
5.92.4. Once the pointer 1is set up, all data on the stack is
referenced relative to the pointer. It should also be noted that
since the form 0(SP) is considered a relative mode, so is its
equivalent @sP. In addition, the forms (SP)+ and =(SP) are required
for stack pops and pushes.

5.2.3 Writing Automatic PIC

Automatic PIC is code which requires no alteration of addresses or
pointers. Thus, memory references are 1limited to relative modes
unless the location referenced is fixed (trap and interrupt vectors,
etc.). In addition to requirements already mentioned, the following
must be observed:

1, Start the program with .=0 to allow easy relocation wusing
CABLDR (see Appendix E).

2, All location setting staterents must be of the form .=.+X or
.= function of tags within the PIC; for example, .=A+1l0 where
A is a local label,

3. There must not be any absolute location setting statements.
This means that a block of PIC cannot set up trap and/or
interrupt vectors at load time with statements such as:

»=34
+ WORD TRAPH, 34D 3 TRAP VECTOR

5-34

14

CABLDR, when it is relocating PIC, relocates all data by the
load bias (see Appendix E). Thus, the data for this vector
would be relocated to some other location. Vectors may be
set at execution time (as discussed next).

5.9.4 Writing Non-Automatic PIC

Often it is not possible or economical to write totally automated PIC;
in these cases, some relocation may be easily performed at execution
time, Scme of the methods of solution are presented below,
Basically, the methods operate by examining the PC to determine where
the PIC is actually located; a relocation facter can then be easily
computed, In all examples, it is assumed that the code is assembled
at zero and has been loaded somewhere else by CABLDR,

Setting up the Stack Pointer - Often the first task of a program is to
set the stack pointer (SP)., This mav be done as follows:

Y JBEG IS THE FIRST INSTRUCTLON
3 0F THE PROGRAM.
BEG: MOV PC,SP sSP=ADDRESS BEG+2

TST -(SP» JDECREMENT SP By 2.
BA PUSH ONTO THE STACK WILL STORE
s THE DATA AT BEG-2.

Setting up a Trap or Interrupt Vector - Assume the first word of the
vector will point to location INT which is in PIC.

X: MOV PC,RO 3 R@= ADDRESS X+2
ADD #INT-X-2,R@® 3 ADD OFFSET
MOV Rd, @ #VECT 3JMOVE POINTER TO VECTOR

The offset INT-X-2 is equivalent te INT-(X+2); X+2 is the wvalue of the
PC moved by statement X. If PC(0) is the PC that was assumed for the
program when loaded at 0 and if PC{n} is the current real PC, then the
calculation is:

INT=-PC(N) +PC{n) =INT+(PC(n}-PC(0))

Thus, the relocation factor, PC{n)-PC{0), is added to the assembled
value of INT to produce the relocated wvalue of INT.

Relocating Pointers - If pointers must be used, thev may be relocated
as shown above, For example, assume a list of data is to be accessed
with the instruction:

ADD (R@)+,R1

The pointer to the list, list L, may be calculated at execution time
as follows:

5-35

M: MOV PC,R@ JGET CURRENT PC
ADD #L-M-2,RO »ADD OFFSET

Another variation is to gather all pointers into a table, The
relocation factor mav he calculated once and then applied to all
pointers in the table using a loop:

X MOV FC,R® }RELOCATE ALL ENTRLES IN PTRTBL
S5UB #X+2,R0D J CALCULATE REL OCATLON FACTOR
MOV #PTRTBL.R1 JGET AND RELDCATE A POINTER
ADD R2.R1 3 TO PTRTBL
MOV #TBLLEN,RZ2 3GET LENGTH OF TABLE

LLOOP: ADD R@,(R1)+ 3 RELOCATE AN ENTRY
DEC R2 3 COUNT
BGE LOOP SBRANCH IF NOT DONE

Care must he exercised wvhen restarting a programn which relocates a
table of pointers. The restart procedure must not include the
relocation, i.e., the table must be reloncated exactly once after each
load.

5.10 LOADING UNUSED TRAP VECTORS

One of the features of the PDP-1l1 is the ahility to trap on various
conditions such as illegal instructions, reserved instructions, power
failure, etc, However, if the +trap vectors are not Ilnaded with
meaningful information, the occurrence of any of these traps will
cause unpredictable results. By loading the vectors as indicated
below it 1is possihle to avoid tiiese probhlems as well as gain
meaningful information abhout anv unexpected traps that occur, This
technique, whichh makes it easy to identify the source of a trap, is to
load each unused trap vector with:

.=trap address
JIORD L +2 ,HALT

This will load the first word of the vector with the address of the
sacond word of the vector (which contains a HALT). Thus, for example,
a halt at location 6 means that a trap through the vector at location
4 has occurred. The old PC and status may he examined hv looking at
the stack pointed to by register 6.

Trap vectors of interest are listed in Table 5-4.

5-36

%

Table 5-4
Trap Vectors

Vector Halt At Meaning
Location Location

4 6 Bus FLrror; illegal instruction;
Stack Overflov; Nonexistent Merory:
Nonexistent Nevice; Word Referenced

at 0dd Address {l.oaded Ly
RESIOMN==-causes Monitor TRAP error
messagea)

10 12 Reserved Instruction (Loaded by
RISHOIT--causes lMonitor TRAP error
messaae)

14 16 Trace Trap Instruction (000003) or

T=hit Set in Status Word (used hy
onT; loaded with a HALT hv RRESHMO

20 22 I0T Executed [(used by RESHON)

24 26 Power Failure or Restoration
(loaded with a HALT by RESMON)

30 32 EMT Executed {loaded with a HALT by
RESMOIT)
34 a6 Trap Fxecutad (Loaded with a HALT

by RESIION)

5.11 CODING TECHNIOULS

Because of the great flexibility in PnP=1l1 coding, time=saving and
space-saving ways of performning operations may not be immediately
apparent, Some special coding technirques are presented in this
section.

5.11.1 Altering Pegister Contents

The techniques dJdescribed in this section take advantage of the
automatic stepping feature of autoincrement and autodecrement modes
when used especially in TST and CHMP instructions. fThese instructions
do not alter operands. .

NOTE

These alternative ways of altering
register contents affect the condition
codes differentlv, Register contents
must be even when stepning by 2,

5.11.2

Adding 2 to a register might be accomplished by ADRD $2,R0,
However, this uses two words, whereas CMPB (RO)+, (RO)+ (which
alsc adds 2 to a register}, uses only one word.

Similarly, subtracting 2 from a register can be done by the
complementary instructions SUR #2,RD or CMPB =({R0O),-(R0O)},

Two may be added or subtracted from tuo different registers,
or 4 from the same register, in one single-word instruction
-as follows:

CMP (REY+,(RO)+ 3ADD 4 TO RO

CMP =(R1),-(RI) 3 SUBTRACT 4 FROM R1

CMP (RDY+,~C(R1) 3ADD 2 TO RO, SUBTRACT 2 FROM R1
CMP -¢R3>,-(R1) 3 SUBTRACT 2 FROM BOTH R3 AND R1
CMP (R3)+,(RO)+ JADD 2 TO BOTH R3 AND R

Variations of the examples above can be employed 1if the
instructions onerate on bytes and one of the registers is the
Stack Pointer. These examples depend on the fact that the
Stack Pointer (as well as the PC) is alwavs autoincremented
or autodecremented by 2, whereas registers RO-R5 step by 1 in
byte instructions.

CMPB (SP)+, (R3)+ JADD 2 TO SP AND 1 TO R3
CMPB -(R3),-(SP) $ SUBTRACT 1 FROM R3 & 2 FROM SP
CMPB (R3) +,-(5P) 3JADD 1 TO R3, SUBTRACT 2 FROM SP

Popping an unwanted word off the processor stack (adding 2 to
register 6) and testing ancother value can be two separate
instructions or one combined instruction:

TST C(SP>+ 3 POP WORD

TST COUNT 3SET CONDITION CODES FOR COUNT
or

MOV COUNT,(CSP»+ 3POP WORD & SET CODES FOR COUNT

The differences are that TST instructions use three words and
clear the Carxy bit, while the MOV instruction uses two words
and does not affect the Carry bit.

Subreoutines

Condition codes set within a subroutine can be used to conditionally
branch
does not affect condition codes.

upon return to the calling program, since the RTS instruction

JSR PC,X 3 CALL SUBROUTINE X
BNE ABC SBRANCH ON CONDITION SET
. 3IN SUBROUTINE X
X: 3 SUBROUTINE ENTRY

CMP R2, DEF JTEST CONDITION
RTS PC JRETURN TO CALLING PROGRAM

When the register in the first operand of a JS5R instruction is not the
PC, data stored following a subroutine call can be accessed within the
subroutine by referencing the register. (The register contains the
return address.) For example:

JSR RS.Y
» WORD HIGH
«WORD L OW
. SLATEST RS VALUE WILL POINT HERE
Yi MOV (R5)+,R2 sJVALUE OF HIGH ACCESSED

MOV (R3>+,R4 JVALUE OF LOW ACCESSED

RTS RS SRETURN TO LOCATI ON
3 CONTAINED IN RS

Another possibility is:

JSR RS, SuUB
BR PSTARG JLOW-0RDER BYTE IS5 OFFSET TO
. JRETURN ADDRESS, WHICH ESUALS NO.
3 OF ARGS.
+WORD A » ADDRESS OF ARG A
«WORD B »ADDRESS OF ARG B
«WORD C JADDRESS OF ARG C
PSTARG: S RETURN ADORESS
SuB1 MOVB @RS, COUNT JGET NO. OF ARGS FROM LOW BYTE

3OF BR (1F DESLRED) .
MOV @14(RS)+R2 JE«Ges GET 6TH ARGUMENT
MOV @86(R5),Rt JGET THIRD ARGUMENT

RTS RS JRETURNS TO BRANCH WHICHK JUMPS PAST
JARG LI ST TO REAL RETURN ADDRESS.

In the example above, the branch instruction contributes two main
advantages:

1.

If R5 is unaltered when the RT5 is executed, return will
always be to the branch instruction. This ensures a return
to the proper location even if the length of the argument
list is shorter or longer than expected.

2. The operand of the branch, being an offset past the argument
list, provides the number of arguments in the list.

Arguments can be made sharable by separating the data from the main
code, This is easily accomplished by treating the JSR and its return
as a subroutine itself:

CALlL:

JSR PCs ARGL ST

ARGL ST: JSR RS, SUB
BR PSTARG
«WORD A

The examples above all demonstrate the calling of subroutines from a
non-reentrant program. The called subroutine can be either reentrant
or non-reentrant in each case. The following example illustrates a
method of allowing calling programs to be reentrant. The arquments
and linkage are first placed on the stack, simulating a JSR R5,SUB, so
that arguments are accessed from the subroutine via X(R5). Return to
the calling program is executed from the stack.

CALL:
MOV R35,-(5P) } SAVE RS ON STACK
MOV JSBRs=-(3PY JPUSH INSTRUCTION JSR Ré,» @RS ON
. } STACK. PUSH ADDRESSES OF
. 3 ARGUMENTS ON STACK IN REVERSE
. 3} ORDER (SEE BEL (W)
MOV BRN,-(SP) 5 PUSH BRANCH INSTRUCTLOM ON STACK
X3 MOV SP, RS JMOVE ADDRESS OF BRANCH TO RS
JSR PC. SUB 3 CALL SUB AND SAVE RETURN ON STACK
RET: MOV (SPX>+,RS JRESTORE OLD R5 UFON RETURM.
- 31 DATA AREA OF PROGRAM

JSBR: JSR Rés @8R5
BRN1: BR « #N+N+2 3 BRANCH PAST N WORD ARGUMENTS

The address of an argument can be pushed on the stack in several ways.
Three are shown below,

1., The arguments A, B, and C are read-only constants which are
in memory {(noct on the stack):

MOV #C,-(SP) 3 PUSH ADDRESS OF C
MOV #B,-(5P) 3 PUSH ADDRESS OF B
MOV #A,-(S5P) 3 PUSH ADDRESS OF A

5-40

2. Arguments A, B, and C have their addresses on the stack at
the Lth, Mth, and Nth bytes from the top of the stack.

MOV N(CS5PY,=-(S5P) 3 PUSH ADDRESS OF C
MOV M+2¢(SP),-(S5P» jPUSH ADDRESS OF B
MOV L+4(SP),~CSP» 3PUSH ADDRESS OF A

Note that the displacements from the top of the stack are
adjusted by two for each previous push because the top of the
stack is being moved on each pusl.

3. Arguments A, B, and C are on the stack at the Lth, BMth, and
Nth bvtes from the top but their addresses are not.

MOV #N+2, -(SP) #1PUSH DISPLACEMENT TO ARGUMENT
ADD SP.@5P $ CALCULATE ACTUAL ADDRESS OF C
MOV #M+ 4, - (SP)

ADD 5P, @SP 3 ADDRESS OF B

MOV #L+6,-(SP)

ADD SP, @5P 3 ADDRESS OF A

When subroutine SUB is entered, the stack appears as follows:

RET
BR . +N+H+2
A
B

JSR R6 ,@R5 sBRANCH IS TO HERE
0ld R5

Subroutine SUB returns by means of an RTS R5, which places R5 into the
PC and pops the return address from the stack inte R5. This causes
the execution of the branch since R5 has been 1loaded at location X
with the address of the branch, The .JSR branched to then returns
control to the ealling program, and in so doing, moves the current PC
value into the SP, thereby removing everything ahove the old R5 from
the stack. Upon return at RET this too 1is popped, restoring the
original R5 and SP values.

The next exarple involves a recursive subroutine (one that calls
itself), Its function is to look for a matching riqght parenthesis for
every left parenthesis encountered. The subroutine is called by JSR
whenever a left parenthesis is encountered (R2 points to the character
following it). Wwhen a right parenthesis is found, an RTS PC is
executed and if the right parenthesis 1is not the last legal one,
another is searched for. When the final matching parenthesis |is
found, the RTS returns control to the main program,

At MOVB (R2)+, R0 3GET SUCCESSIVE CHARACTERS
CMP #°(,R0O sLOOK FOR LEFT PARENTHESIS
BNE B s FOUND?
J5R PC, A $LEFT PAREN FOUND, CALL SELF
BR A $G0 LOOK AT NEXT CHARACTER

B3 CMPB #').,RP JLEFT PAREN NOT FOUNDs, LOOK FOR
JRIGHT PAREN
BNE A 3FOUND? [F NOT, GO TO A
RTS PC JRETURN PAREN FOUND, IF NOT LAST,
JGO TO B. IF LAST, GO TO MAIN
$ PROGRAM

The example helow illustrates the use of co-routines, called by
JSR PC,8(5P)+. The program uses double buffering on both input and
output, performing as follows:

Write 0l Write 02
Read Il } concurrently Read I2 } concurrently
Process Il Process Il

JSR PC,R@(SP)+ always performs a jump to the address specified on top
of the stack and replaces that address with the new return address.
Lach time the JSR at B is executed, it jumps to a different location;
initially to A and thereafter to the location following the JSR
executed prior to the one at B, All other JSR's jump to B+2,

PC=X7
BEGIN: . sDO0 I /0 RESETS, INITS, ETC.
10T $READ INTO I1 TO START PROCESS
«BY TE READsINSLOT
+WORD I1
MOV #A, -(6) JINITIALIZE STACK FOR FIRST JSR
B: JSR PC,e(c6)+ DO I/70 FOR 01 AND Il OR 02
. PAND 12
- 3 PERFORM PROCESSING
BR B 3MORE 1 /0

JEND OF MAIN LOOP
11/70 CO-ROUTINES

Az LOT 3} READ INTO 12

«BYTE READ,INSLOT

«WORD [2
. 1SET PARAMETERS TO PROCESS
- 111, 01

JSR PC, @C6)+ JRETURN TO PROCESS AT B+2

10T JWRITE FROM O}

+«BYTE WRITE, QUTSLOT

«WORD 01

10T 3READ INTO I1

+BY TE READ, INSLOT

+WORD 11
. J SET PARAMETERS TQ PROCESS
» 3121 02

JSR PC,e¢6)+ 3 RETURN TO PROCESS B+2

10T JWRITE FROM 02

«BYTE WRITE, QUTSLOT

+» WORD 02

BR A $ READ INTO I2

4

The trap handler below simulates a two-word JSR instruction with a
one-word TRAP instruction. In this example, all TRAP instructions in
the program take an operand and trap to the handler address at
location 34, The table of subroutine addresses (e.g., A, B, ...) can

he constructed as follows:

TABLES
CAL A=.-TABLE
« WORD A s CALLED BY: TRAP CALA

CALB=.-TABLE
+WORD B JCALLED BY: TRAP CALB

Another way to construct the tahle:

TABLE:
CALA=.-TABLE+TRAP
-WORD A s CALLED BY: CALA

The trap handler for either of the above methods follows:

TRAP34: MOV @5P,2(SP) 3 REPLACE STACKED PS WITH PC*
SUB #2, 8SP 3GET POINTER TO TRAP
JINSTRUCTI ON
MOV @CSP)+,-(SP) } REPLACE ADDRESS OF TRAP WITH

3 TRAP INSTRUCTION ITSELF
ADD #TABLE-TRAP, #SP 3 CALCULATE SUBROUTINE ADDR.
MOV @(5P)+,PC 3JuMpP TO SUBROUTINE

*Replaring the saved PS loses the T-bit status. If
a breakpoint has been set on the TRAP instruction,
ODT will not gain control again teo reinsert the
breakpoints because the T-bit trap will not occur.

In the example above, if the third instruction had been written
MOV @(8P) ,{sP) it would have used an extra word since B(8P) is in
Index Mode and assermbles as 80(SP). In the final instruction, a jump
was executed by a MoV @ (SP)+,PC, becuase no equivalent JMP instruction

exists,

Following are some JMP and MOV equivalences (note that JMP does not
affect condition codes).

JMP (R4) = MOV R4,PC

JHMP @(R4) = MOV (R4) ,PC
{2 Words) {1 Word)

HNone = MOV @(R4) ,PC

JMP = (R4) = Hone

JMP @(R4)+ = MOV (R4)+,PC

JMP @~ (R4) = MOV -{R4} ,PC

None = MOV @({R4)+,PC

None = MOV @= (R4} ,PC

JMP X = MOV #X,PC

JHP @x = MOV X,PC

None = MOV @X,PC

The trap handler can alsc he useful as a patching technique. Jumping

out to a patch area is often difficult because a two-word jump must be
performed, However, the one=-word TRAP instruction may he used to
dispatch to patch areas. A sufficient number of slonts for patching
should first be reserved in the dispatch table of the trap handler,
The jump can then bhe accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be nade,

5.12 ASSEMBLY DIALOGUE

During assembly, the Assembler will pause to print on the console
terminal various messages to indicate that some response mast e made
by the user before the assemhly process can continue, CTRL/F may be
typed at any time to stop the assembly process and restart the initial
dialogue, as mentioned in Section 5,1.3.

If the specified assembly listing output device is the Line Printer
and it is out of papér, the Assembler prints on the terminal:

EOM?

and waits for paper to he placed in the device. Typing the RETURN key
will continue assembly.

Other conditions which mav cause the ENM? message for the line printer
are: a) no power, b) printer drum gate open, and c¢) too hot,

There is no EOM if the line printer is switched off-line, although
characters may be lost for this condition as well as for an EOM.

If the end-of-tape is reached during cassette output and the user has
not indicated an overflow file using the /O option, the Assembler will
print:

EOM?
RETRY ?

The user must mount a different output cassette and then type any
character on the keyboard; the Assemhler will retry the same assembly
using the new output cassette., Alternatively, the user can type *C
and return to the KBL, (In systems greater than than 8K, the user may
also type *tP, which returns control to the €SI, enabling another
command string to be entered.)

If a hard read error is detected on one of the input files, the
Assembler will print:

XBAD TAPE
RETRY ?

Typing *C will return control to the KDL. Typing +tP or any other
character will cause the Assembler teo retry the same assembly. (In
systems larger than 8K, the Assembler will return to the CSI and allow
the user to input a new command,)

If the last file does not have a .END, the Assembler will print:
MO END STMT

and will emulate a ,END assembler directive. MNote that when L.END is
emulated in this manner the error counter is incremented by one,

5.13 ASSEMBLY LISTING

The CAPS~11l Assembler produces a side-by-side assembly listing of
symbolic source statements, their octal equivalents, assigned
addresses, and error codes, as follows:

CCAARAAA O0ND00D'SSS,.ueve4S
000000
000000

The C's represent the error code field; error codes (listed in Table
5-4) are flagged in this field. The A's represent the 6-bit octal
address, while the 0's represent the ohject data in octal, The S§'s
represent the source statement, and ' represents a single apostrophe
which will be printed whenever either the second, third or both words
of the instruction will be modified by the Linker. The Assembler
accepts on input 72(decimal) characters per line, Any additional
characters on the line will be ignored and the Assembler will generate
an 'L' error code.

If an instruction requires two or three words, the second and third
words of the statement are 1listed under the command word. No
addresses precede the second or third words since the address order is
sequential, The second and third words can be eliminated from the
assembly listing by means of the /X switch.

The ohject data field of a .BYTE directive is assembled as three octal
digits,

The value of the defining expression in a direct assignment statement
is given in the object code field although it is not actually part of
the code of the object progranm.

The .ASECT and ,CSECT directives c¢ause the current wvalue of the
appropriate location counter (absoclute or relocatable) to be printed.

Each page of the listing is headed by a PAL identification line and a
page numher (octal).

An example of an assembly listing is shown in Chapter 7, Section 7.6.

5,14 OBJECT MODULE OUTPUT

The output of the assembler during the binary object pass is an object
module which is meaningful only to the Linker. An overview of what
this object module contains and at what stage each part of it is
produced follows,

The binary object module consists of tiiree main types of data block:
1. Global Symbol Directory (GSD}

2. Text blocks (TXT)
3. Relocation Directory (RLD)

5.14,1 Globkal Symbhel Directory

As the name suggests, the GSD contains a 1list of all the glecbal
symbols together with the name of the object module. Each symbol is
in Radix 50 form and contains information reqgarding its mode and wvalue
whenever known.

The GSD is created at the start of the binarvy object pass.

5.14.2 Text Blocks

The text blocks consist entirely of the binary ohject data as shown in
tihe listing. Operands are in the unmodified form.

5.14.3 Relocation Directory

The RLD blocks consist of directives to the Linker which may reference
the text blocks preceding the RLD, These directives control the
relocation and linking process.

Text and RLD hleocks are constructed during the binary object pass.
Outputting of each block is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to be modified.

n

5.15 ERROR CODES
The error codes printed heside the octal and svmholic code in

assembly listing have the following meanings:

Table 5=5
Assermbler FError Codes

Error Code Meaning

A Addressing error. An address within the
instruction is incorrect; may also
indicate a relacation error.

S~ B Bounding error. Instructions or word
memory data are being assembled at an
odd address in menory. The location

counter is updated by +1.

D Douhlv-defined svmbol referenced,
Reference was made to a symbol which is
defined more than once.

1 Illegal character detected. Illegal
characters which are also non-printing
are replaced by a ? on the listing,

L Line buffer overflow, Extra characters
on a line (more than 72{decimal)) are
ignored.

M Multiple definition of a labhel, A label
was encountered which was equivalent (in
the first six characters) to a
previously encountered label,.

N Number containing 3 or 9 has decimal
point missing. The number is assembled
as a decimal number,

P Phase error., A lahel's definition or
value varies from one pass to another,

Q Questionable syntax, There are missing
arqguments, the instruction scanwas not

- completed, or a carriage return was not
immediately followed by a line feed or
form feed.

R Peqgister-type error. An invalid use of
= or reference to a reqgister has been
made,

(Continued on next page)

5-47

the

Tahle 5-5 (Cont.)
Assemhler Error Codes

Error Code Meaning

s Synmbol table overflow, When the
quantity of user-defined symbols exceeds
the allocated space available in the
symhol table, the Assembler outputs the
current source line with the S error
code, then returns to the Monitor (or to
the CSI in systems larger than B8K).

[

T Truncation error. A numbher generated
more than 16 bits of significance, or an
expression generated more than 8 hits of
significance during the use of the .BYTE
directive,

U Undefined symbol., An undefined symbol
was encountered during the evaluation of
an expression. Relative to the
expression, the undefined symbol is
assigned a value of zero.

In addition to the error codes listed above, the following messages —
may also occur (error messages which are followed hy a question mark

allow the user to type a CTRL/C to return to the KBL. or a CTRL/P to

retry the operation):

Table 5-6
Assembler LError Messages

Message Meaning

$BAD CMD STRING One of the following errors has
occurred in the user's command
string:

No output was specified;

No input was specified;

Input and output were specified
on the same drive;

Input was specified from a device
other than cassette;

Binary output was specified to a
device other than cassette,

?BAD TAPE? A checksum or other hard error
occurred during a file lookup or
enter command, Typing any

character will cause the Assembler
to retry the operation.

(Continued on next page)

Table 5-6

Assembler LError Messages

Message

T

Meaning

3¥BAD TAPE
RETRY?

EOM?

EOM?
RETRY?

?FILE KOT FND?

?NO END STMT

?8WITCH ERROR:'x'?

?TAPE FULL?

A hard read error was detected on
one of the input files; tvping any
character (except CTRL/C) will
cause the Asserbler to retrv the
same assembly ({in syvstems larger
than 8K, the Assemhler will return
to the CRI and allow the user to
input a new cornmand).

The line printer is out of paper or
is not powered up; the drum gate is
open; or the printer is toco hot,

The end of the tape was reached
during cassette output and no
overflow file was specified. The
user may mount another cassette and
then type any kevhoard character to
instruct the Assembler to retryv the
assemhly using the new output
cassette,

The Asserhler could not find one of
the input files, The user may
mount another cassette and type any
character on the kevhoard to
instruct the Assembler to retry the
lookup on the same drive, Typing a
CTRL/P will restart the Assemhler
(if the svstem is BK the same
assembly will be restarted,
otherwise control will return to
the CSI.)

The file does not contain an LEND
directive; the Assembler assumes an
+END statement.

An undefined option character (x)
was found in the command string.
T™vping any character on the
keyhoard will cause the Assembhler
to ignore the option and continue.

The specified output cassette is
completely full, Mounting a
different cassette on the same unit
and tvping any character instructs
the Assembler to attempt to open
the file on a new cassette.

e

CHAPTER 6

LINKING ASSEMBLED PROGRAMS

The CAPS=11 Linker converts object modules produced by the Assembler
into a format suitable for loading and execution. This allows the
user to assemble a large program in several small subprograms or to
separately assemble a maln program and each of its subroutines without
assigning an absolute load address at assembly time, Object modules
are processed by the Linker to:

Relocate each object module and assign absolute addresses,

Link the modules by correlating global symbols defined in
one module and referenced in another module,

Print a load map which displays the assigned absolute
addresses,

Output a load module which can subsequently be loaded and
executed.

Advantages of using the CAPS-1l1l Assembler and the Linker include the
following:

l. A program is divided into segments ({(usually subroutines)
which are assembled separately. If an error is discovered in
one segment, only that segment need be edited and
reassembled. The new object module is then linked with the
other object modules,

2, Absolute addresses need not be assigned at assembly time as
the Linker automatically assigns absolute addresses, This
keeps programs from overlapping each other and alsc allows
subroutines to change size without influencing the contents
of other routines,

3. Separate assemblies allow the total number of symbols to
exceed the number allowed in a single assembly.

61

4, Since global symbols are usually referenced from more than
one object module, the programmer must be sure that his names
for such symbols are unique between object modules. However,
this does not apply when the symbol is internal; since an
internal symbol is referenced only from within the current
assembly, the same symbol names may be used in several
different modules,

5. Subroutines may be provided for general use in object module
form to be linked into the user's program.

6.1 CALLING AND USING THE LINKER
The Linker is called from the System Cassette by typing:
#R LINK

In response to the dot printed by the Keyboard Listener. The Command
String Interpreter responds by printing an asterisk (*} at the left
margin of the teleprinter paper, The user may respond with his I/0
specifications as scon as the asterisk appears even though the
remainder of the Linker is being loaded into memory simultaneously.

The Linker requires two passes over the input object modules, During
the first pass any undefined globals are 1listed on the console
terminal, and a global symbol table is constructed which includes all
the control section names and glcbal symbols in the input modules., On
the second pass, the Linker reads the object modules, performs most of
the functions 1listed in the introductory description and produces a
load module which can be loaded {using the Monitor LOAD command)} and
executed. The load module is output in binary image format.

After execution, control returns to the CSI, indicated by an asterisk
at the left margin; the user may enter another command string.

6.1.1 Linker Options

The options listed in Table 6-1 are available for use by the Linker
and are designated by the user in the I/0 specification line:

6-2

0

Table 6-1
Linker Options

Option Meaning

/C This option allows the I/0 specification
line to be broken into several segments,
The option character is followed
immediately by a carriage return and the
I1/0 specification is continued on the
next line; this line must begin with a
comma.

/F This option is valid only after an input
filename and indicates that the Linker
should not perform a REWIND operation
but should continue searching the
cassette in a forward direction for this
file. This feature saves the user time
when he wishes to input several files
from one cassette and these files appear
on that cassette in the same order as
they are to be linked. The /F option
prevents the Linker from performing a
REWIND before accessing each file,

/0 This option is wvalid only after an
output filename and indicates that the
file (immediately preceding the option)
is to be created and used only if a
previously opened output file has been
written to the end of a cassette and
more output remains, All output files
can later be combined under one name
using PIP (see Chapter 8),

/P This option 1is wused whenever a file
referenced in an I/Q specification line
is on a cassette which is not currently
mounted on the unit drive, Before
attempting to search for the file, the
Linker instructs the user to mount the
proper cassette on the drive by printing
#? where # represents the drive number.
After the user has switched cassettes on
the drive, he may continue execution by
typing any character on the keyboard.

/S This option is valid only after an input
filename and indicates that two or more
object modules have been combined {(using
PIP) under the single filename. The
option instructs the Linker not to skip
to the next input filename until it has
obtained all necessary information for
the files included in the first.

(Continued on next page)

63

Table 6-1 (Cont.)
Linker Options

option Meaning

/T The /T option is valid only after an
input filename and indicates that the
transfer address of this particular
object module is to be used as the
transfer address of the final load
module. If more than one /T option is
indicated in the I/0 specification line,
only the last one is significant,

/B:n The program is to be 1linked with its
lowest location at n. If n 1is not
specified, the Linker assumes location
600. {(The Monitor uses locations

400-600 for stack space while loading is
in progress, so the user should not
attempt to link any data for loading
into that area.)

JHgn The program is to be linked with its
highest location at n. If n is not
specified, the Linker assumes that the
last location of the user program will
go just under CLOD1ll (see Chapter 3,
Figure 3-1). The user can then use the
LOAD/G command to run his file.

NOTE

If neither the /B or /H options are
indicated (or 1f both are indicated),
the Linker will load the program with
its highest location just below the KBL,
so that the entire CAPS-11 Monitor will
be preserved.

The Linker does not give a warning if a
program is 1linked 4in memory in such a
way that its lowest address falls below
address 0, However, this condition can
be easily recognized by examining the
low and high 1limits which are always
printed in the load map.

If the user wishes to link his program for an overlay 1load (via the
LOAD/O command), he can link it using the /B switch with nc value.
The lower limit is set to 600 and the Linker will set the high limit
to allow just enough memory for CABLDR and CBOOT (which the user needs
to load his program and to re-boot the CAPS~11 System). The LIMIT
assembler directive (see Chapter 5) can be used to instruct the Linker
to load the value of the high limit into the user-program. If the
user wants to link his program at the top of memory, he should use the

64

/H switch designating a value which is 1214 (octal) bytes less than the
number of bytes in his machine, For an BK system this would be
40000-1214 or 36564 (octal); the program would then bhe 1linked using
/H:36564,

(

i

6.1.2 Input and Output Specifications

The Linker allows two output specifications, one for binary output and
one for the load map output, Inserting only a comma for either output
specification instructs the Linker that no output of this type 1is to
be produced. Any number of input files are acceptable. The format of
the I/0 specification line is:

*DEV:FILENA,LDA/OPT,DEV:FILENA, MAP/OPT=DEV: INPUT1,0BJ/C
, DEV: INPUT2,0BJ/OPT, .., .DEV:INPUTn.OBJ/OPT

DEV represents one of the CAPS-1l1 1/0 devices; OPT represents any of
the options 1listed in Table 6-1. Unless otherwise indicated, the
Linker assumes the extension .LDA for the binary output file, .MAP for
the load map output, and ,0BJ for the relccatable binary object module
input files.

For example, consider the following I/0 specification lines:

<R LINK
2CT 11 PROGsLPt 281 RESs TYPE. 3RN /F, B: SI GN/P/C
» TABLE. DAT/F/H: 2020

This command line causes the Linker to output the load module
(PROG.LDA) on cassette drive 1, and the load map on the line printer;
the input files are RES.0OBJ and TYPE.3RN, both on cassette drive 0
(the /F option indicates that TYPE,3RN fcllows RES.OBJ on the cassette
and that no rewind is necessary); the next input file (SIGN.OBJ) is on
a cassette which 13 not currently mounted, so the user asks to be
prompted {via the /P option) when the file is needed; the c¢ommand
string is continued on the next line, and the final input file is
TABLE,DAT which is in a forward direction (in relation to SIGN,OBJ) on
the cassette now mounted on drive 0, The program (PROG.LDA} is linked
so that its highest address is at location 2000,

R LINK
!:TTH’ACEO 1, BAK . QBJ

In this example, no output load module is created; the load map 1s
output to the console terminal; the input files are ACE,l1 and BAK,OBRJ,
both on cassette drive 0, The cassette is rewound before BAK.OBJ is
accessed. Since no linking address is specified in the command line,
the program is linked so that its highest 1location will 1load just
below the KBL, preserving the entire CAPS-11 Monitor.

6.1.3 Restarting the Linker
The Linker may be restarted at any time (while it is memory) by typing

CTRL/P. This echoes as 1P followed by a carriage return/line feed,
Control is passed back to the Command String Interpreter and the user

-5

may input a new command string. (An exception occurs when typing tP
while the 1load map is being output--this causes the Linker to
terminate the map immediately and start Pass 2.)

6.2 ABSOLUTE AND RELOCATABLE: PROGRAM SECTIDNS

As explained in Chapter 5, the programmer may designate sections of
his program as absolute or relocatable by means of the ,ASECT and
.CSECT assembler directives. (The Linker assumes L,CSECT if neither
directive is indicated.) In an absolute section, a direct assignment
statement of the form .=EXPRESSION initially assigns an absolute
address to an instruction; succeeding instructions and data in the
absolute section are then assigned absolute addresses in accordance
with the assembly location counter,

Instructions and data encountered in relocatable sections are assigned
absolute addresses by the Linker, These addresses are normally
assigned such that the relocatable sections are loaded just below the
lowest location of the KBL {although the user can control this with
the Linker /B and /H options}, All instructions and data which the
programmer has designated in a relocatable section (called a control
section and indicated by a « CSECT directive) are modified
appropriately and as necessary by the Linker to account for their
relocation,

6,2.1 MNamed and Unnamed Contreol Sections

The Linker has the capability of handling named and unnamed control
sections, (Assigning names to control sections 1s a feature not
supported by the CAPS-11 Assembler, although the programmer may have
cccasion to use other assemblers which do allow this feature.} An
unnamed control section {which is actually assigned a special default
name of é& blanks, i.e,, .CSECT) 1is internal to each object
module and is treated independently from any other unnamed control
section. The Linker assigns each unnamed section an absolute address
such that it occupies an exclusive area of memory. Named control
sections, on the other hand, are treated globally. That is, if
different object modules have control sections with the same name,
(for example, ,CSECT DATA}, they are all assigned the same absolute
load address and the size of the area reserved for loading of the
section is that of the largest, Thus, named control sections allow
for the sharing of data and/or instructions among cbject modules. A
restriction is that the name of a control section must not be the same
as the name of a global entry symbol as this will result in multiple
definition errors.

The absolute section is always assigned the special name (ABS (i.e.,
.ASECT.ABS) by the Linker.

LI

:fr

6.3 GLOBAL SYMBOLS

Global symbols provide the links, or communication, between object
nodules. Global syrmbols are created with the ,GLOBL assembler
directive (as described in Chapter 5). Symbols which are not global
are called internal symbols, If the global symbol is defined in an
object module {as a label or direct assignment) it is called an
entry symbol and other object modules can reference it. If the global
symbol is not defined in the object module, it is an external symbol
and is assumed to be defined {(as an entry symbol) in some other object
module,

As the Linker reads the object modules it keeps track of all global
symbol definitions and references. It then modifies the instructions
and/or data which reference the global symbols., Undefined globals are
printed on the console terminal during pass l.

6.4 INPUT AND OUTPUT

Linker input and output is in the form of modules; one or more input
modules (object modules produced by the Assembler) are used to produce
a single output {load) module.

6.4,1 Object Modules

Object files, consisting of one or more object modules, are used as
input to the Linker; these object modules have been previously created
by the Assembler, and more than one object module may have been
combined using PIP to form a single object file. The Linker reads
each object module twice; that is, it is a two-pass processor. During
the first pass, each object module is read so that absolute addresses
can be assigned to all relocatable sections and all globals can be
assigned absolute values, The information the Linker needs for this
process is contained in the global symbol directory (GSD), located at
the beginning of each object module. Unless the /S switch has bean
indicated in the command line, during the first pass the Linker reads
only the GSD at the beginning of the object file,

On the second pass, the Linker reads the object modules, 1links and
relocates the modules, and outputs the load module, During this pass
it uses a block of information output by the Assembler in the object
file which is called the Relocation Directory (RLD).

6.4.2 Load Module

The primary output of the Linker is the load module which may be
loaded and run under the CAPS-11 Keyboard Monitor. The load module
consists of formatted binary blocks holding absolute load addresses
and object data. The first few words of data will be the
communications directory (COMD) which will have an absolute load
address equal to the lowest relocated address of the program. CABLDR
or CLOD1l will load the COMD at the specified address but the COMD
will then be overlayed by the program. The end of the module will be

6-7

indicated by a TRA block; that is, a block containing only a locad (cr
transfer) address., The byte count in the formatted binary block will
be 6 on this block; on all other blocks the byte count will be larger
than 6, The TRA is normally selected by the Linker to be the first
even transfer address seen. Thus, if four object modules are linked
together and if the first and second had an ,END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three. However, the user can specify directly which
transfer address is to be used by the Linker wvia the /T option as
described in Table 6-1,

NOTE

The overlaying of the COMD by the
relocated program is a method which
allows CABLDR to handle 1load modules
with a COMD. However, a problem arises
if a load module is to be loaded by
CABLDR and either of the following
conditions is true:

1. The object modules used to
construct the load module
contained no relocatable code;
or

2. The total size of the
relocatable code is less than
32(10) bytes (the size of the
COMD} .

In either case, there 1s not enough
relocatable code to overlay the COMD
which means the COMD will 1load into
parts of memory not intended to be
altered by the user. The COMD's load
address, selected by the Linker in the
above cases, is 400(octal). This area
is reserved for the Monitor stack while
locading is in progress, so no user data
should be destroyed when the COMD is
loaded there.

6.4.3 Load Map

The load map provides several types of information concerning the load
modulets make=up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address. Then a
section of the map is allocated for each object module included in the
linking process. Each of these sections begins with the module's name
followed by a 1list of the control sections and the entry points for
each control section. The base of each control section (its low
address) and its size (in bytes) is printed to the right of the
section name (enclosed in angle brackets). Pollowing each section
name printout 1s a list of entry points and their addresses. After
all information has been printed for each cbject module, any undefined

-8

symbols are listed. Note that modules are loaded such that if modules
A, B and C are linked together, A is lowest and C is highest in

mMemory.

The format is self-explanatory and is illustrated in Section 6.6.

-

NOTE

A CTRL/0 typed during output of the
Linker 1load map is treated somewhat
differently than during normal CTRL/QO
usage, If the wuser does not wish to
list all entry points when the map is
being output on the console terminal,
typing t0 will suppress output of the
load map until the beginning of the
section for the next module; the Linker
will then automatically restart the load
map output for this module.

6.5 ERROR MESSAGES

The following messages are printed by the Linker whenever it detects
an error during the 1linking process. Two types of errors may

occur--fatal and non~fatal,

6.5.1 Non=Fatal Errors

Table 6-2 lists errors which can occur without causing an interruption

in the linking process,

Table 6=2

Linker Non-Fatal Error Messages

Message

Meaning

?BAD TAPE?

?BYTE RELOC ERROR AT
ABS ADDRESS XXXXXX

A checksum or other hard error
occurred during a file LOOKUP or
ENTER command, Typing any
character will cause the Linker to
retry the operation.

This message designates a byte
relocation error. The Linker will
try to relocate and 1link byte
quantities; however, relocation
will usually fail and 1linking may
fail. (Failure is defined as the

{Continued on next page)

6-9

Table 6-2 (Cont.}

Linker HNon~Fatal Error Messages

Message

Meaning

?FILE NOT FND?

?MAP DEVICE EOM?

ZMODULE NAME XxXXXXXX

NOT UNIQUE

?SWITCH ERROR: 'x'?

?TAPE FULL?

high byte of the relocated wvalue or
the 1linked value not being zero.)
In such a case, the value is
truncated to B bits and the error
message is printed to inform the
user., The Linker then
automatically continues.

The Linker could not £find one of
the input files. This is generally
caused when the wrong cassette is
mounted on a drive, Upon
occurrence of the message, the user
may mount the correct cassette;
typing any character on the
keyvyboard will cause the Linker to
retry the LOOKUP on the same drive,
Typing a CTRL/P will restart the
Linker; typing a CTRL/C will cause
a return to the Monitor.

The Load Map device EOM error
allows the user an option to fix
the device and continue or abort
the map listing. Typing a carriage
return (or any other character)
causes the Linker to continue (if
the map device was cassette, the
map listing is continued on the
console terminal); a tP will cause
the map to be aborted.

This error is detected during pass
1l and results from a non-unique
ocbject module name. The module is
rejected and the Linker will then
ask for more input.

An undefined option character (x)
was found in the command string,
Typing any character on the
keyboard will cause the Linker to
ignore the option and continue.

The specified output cassette is
full, Mounting a different
cassette on the same unit and
typing any character instructs the
Linker to attempt to open the file
on the new cassette,

(Continued on next page)

6-10

13

P

Table 6-2 (Cont,)

Linker Non-PFatal Error Messages

Message

Meaning

?RUAXXXX MULTIPLY DEFINED
BY MODULE XXXXXX

This message results during pass 1

if glcbals have been defined more
than once. The second definition
is ignored and the Linker

continues,

6.5.2 Fatal Errors

The following errors are fatal and cause

Monitor.,

control to return to

Table 6-3

Linker Fatal Error Messages

the

$CAS. CHECKSUM

$0DD ADDRESS

$SYMBOL TABLE OVERFLOW-
MODULE xXxxxxx, SYMBOL
XXAXXXX

Message Meaning
$BAD CMD STRING One of the following errors has
occurred in the wuser's command
string:
No output was specified;
No input was specified;
Input and output were specified
on the same drive;
Input was specified from a

device other than cassette;

Binary output was specified to a
device other than cassette.

A checksum error was detected while
reading a cassette block.

An odd address was specified wusing
the /B or /H options in the command
string.

A symbol table overflow has
occurred (the 8K Linker has room
for approximately 225 {decimal)

symbols) .

{Continued on next page)

6-11

Table 6-3 (Cont.)
Linker Fatal Error Messages

Message Meaning

¥5YS5TEM ERROR xx A system error has occurred; xx
represents an identifying number
from the following list:

0l Unrecognized symbol table
entry found.

02 A relocation directory
references a global name which
cannot be found in the symbol
table.

03 A relocation directory
contains a location counter
modification command which is
not last.

04 Object module does not start
with a GSD,

05 The first entry in the GSDh is
not the module name.

06 A Relocation Directory (RLD)
references a section name
which cannot be found.

07 The transfer address {TRA)
specification references a
non-existent module name.

08 The transfer address {TRA)
specification references a
non-existent section name,

09 An internal jump table index
is out of range.

10 A checksum error occurred on
the object module,

11 An object module binary block
is too big {more than
64 (decimal) words of data).

12 A device error occurred on the
load module output device.

All system errors except number 12 indicate a program failure either
in the Linker or the program which generated the object module. Error
05 can occur if a file is read which is not an object module.

6-12

6.6 EXAMPLE USING THE LINKER

The following example demonstrates how the wuser can link the PAL
Assembler for an 8K system. A lcad map is produced on the console
terminal, and the load module is output to cassette drive 1 as
PALS.SRU. {Refer to Appendix E for complete instructions on how to
build systems for any configuration,)

«R LINK

+ 11 PALB.SRU,TT: =PAL 115, PALEKS/F,CSI TAC/F /B1 480

CAPS-11 LINK V@1
LOAD MAP

TRANSFER ADDRESS: 002754
LOW LIMIT: @00400
HIGH LIMIT: 830544

khhhkkhik

PAL

SECTION ADDRESS SIZE

<. ABS.> PR000D ©PO00RD

COLLID @@08158 RESREG 184124 SAVERE 194122 STSIZE @81312
< > 2de49ad 029222

ASCII Q97864 ASECT PP6232 BYTE ger2e2 CSECT pA6146
END 210474 ENDC PO&PTSs EOT 996566 EVEN PR6676
GLOBL PA6324 [FDF pB5712 IFG BB5616 IFGE Pa5620
IFL PA5622 IFLE 085624 [FNDF BB5716 |IFNZ 0B5614
IFZ 005632 LIMIT peTRe2 LIST PB6130 NLIST Pa6136
RADSO 287042 TITLE 206520 WORD aer172

*hbkkkkkk

PAL SYM

SECTION ADDRESS SIZE

< > 920622 ©PR4TR03
CHAR13 028622 CHARA46 822134 DOTFLG 825323 FLAGS B24760
IDOT P24354 SVALUE 0223446

L L L L)

CS1TAC

SECTION ADDRESS SIZE

< > P25526 0B3016

BADEXI 0226468 CSITAC 925532 ERRCOM 026350 HDRBUF 827584
IGNRFU 825526 INOUT B25554 MESOUT 927214 MESRES 027210
NMBUF@ 826662 SWMSFL 826064 TYPEGD 026673 TYPEB1 026733
PASS 2

*x

6-13

——

CHAPTER 7

DEBUGGING THE OBJECT PROGRAM

ODT (On-line Debugging Technicque) aids the user in debugging assembled
and linked object programs, Using the console terminal keyboard, the
user interacts with ODT and his object program to:

Print the contents of any location for examination
or alteration

Run all or any portion of the object program using
the breakpoint feature

Search the object program for specific bit patterns

Search the ohject program for words which reference
a specific word

Calculate offsets for relative addresses

Fill a block of words or bytes with a designated
value

During a debugging session, the user should have at the conscle
terminal an assembly 1listing of the program to be debugged. Minor
corrections to this program can be made on-line and the program may
then be run under control of ODT to werify any change made, However,
major corrections such as a missing subroutine should be noted on the
assembly listing and incorporated in a subseguent updated program
assembly.

7.1 CALLING AND USING ODT

ODT is supplied as a relocatahle object module and is also stored on
the System Cassette. It is linked so as to be loaded just under the
KBL (refer to Appendix E); the procedure for loading ODT and the user
program is:

«LOAD FILENA.EXT
.R oDT

These commands load the user-program to be debugged into memory and
call and start the debugger. This is the most common form of ODT use,
as it is expected that user programs will start in low memorv and that
the standard location of ODT will suffice. However, the user may
alternatively relink ODT using the CAPS~1l1l Linker, or link ODT along
with his program.

7.1.1 ODT Options

The only options allowed are those used by the LOAD command when the
user program is loaded into memory., ODT itself does not utilize the
CSI.

7.1.2 Input/Qutput Specifications

The input file is indicated in the LOAD command, No output file
specifications are allowed., ODT is an on-line utility program which
aids the user in determining corrections and modifications to his
program; these corrections may then be implemented using the Editor
and Assembler.

7.1.3 Restarting ODRT

If ODT is in control, typing CTRL/P will restart ODT (indicated by an
asterisk at the left margin), removing all breakpoints and clearing
all relocation registers. If the user program is in control and no
breakpoint or HALT instruction is encountered to stop program
execution, then ODT may be restarted by following one of the
techniques described in Section 7.4.2.

7.2 RELOCATION

The Assembler produces a binary relocatahle object module; the base
address of +this module is assumed to be location 000000 and the
addresses of all program locations as shown in the assembly 1listing
are 1indicated relative to this base address. After the module is
linked by the Linker, many values within the program and all the
addresses of locations will he incremented by a constant whose value
is the actual absclute hase address of the module after it has been
relocated. This constant is called the relocation bias for the
module.,

A linked program may contain several relocated modules each with its
own relocation bias; since, in the process of debugging, these biases
will have to be subtracted from abhsolute addresses continually in
order to relate relocated code to assemhly listings, ODT provides an
automatic relocation facility.

The basis of the relocation facility lies in eight relocation
registers numbered 0 through 7 (these should not be confused with
general registers 0-7) which may be set to the values of the
relocation biases at any given time during debugging (this procedure
is explained in Section 7.3.13). Relocation biases are obtained by
consulting the memory map produced by the Linker, Once set, a
relocation register is used by ODT to relate relocatable code to
relocated code. The relocation registers are initialized by ODT to
-l. (For more information on the exact nature of the relocation
process, consult Chapter 6.}

7.2.1 Relocatable Expressions

A relocatable expression is evaluated by ODT as a l6-hit (6 octal
digit) number and may be typed in any one of the three forms presented
in Table 7-1. In this table, n represents an integer in the range ¢
to 7 inclusive and k stands for an octal numher of up to six digits in
length with a maximum value of 177777. If more than six digits are
typed, ODT uses the last six digits truncated to the low-order 16
bits., k may be preceded by a minus sign, in which case its wvalue is
the two's complement of the number typed. For example:

k (number typed) Vvalue

1 000001

-1 177777

400 000400

=-177730 000050

1234567 034567
Table 7-1

Forms of Relocatable Expressions (r)

r Value of r

a) k The value of r is simply the
value of k.

b) n,k The value of r is the value of
k plus the contents of
relocation register n. If the
n part of this expression is
greater than 7, ODT uses only
the last octal digit of n.

c) C or Whenever the letter C is
C,k or typed, ODT replaces C with the
n,C or contents of a special register
c,cC called the Constant Register,.

This wvalue has the same role
as the kK or n that it replaces
(i.e., when used in place of n
it designates a relocation
register). The Constant
Register is accessed by typing
the symbol SC and may be set
to any value. (See Section
7.3,10,)

7-3

In the following examples, assume that relocation register 3 contains
003400 and that the Constant Register contains 000003:

|

Value of r

000005
7 177761
0 003400
150 003550
-1 003377

000003
,C 003403
.0 003400
,10 003410
,C 003403

AOOWhwwwt v

NOTE

For simplicity's sake, most examples in
this section use form a; all three forms
of r are equally acceptable, however.

7.3 COMMANDS AND FUNCTIONS

After ODT is loaded and started it indicates its readiness to accept
commands by printing an asterisk (*) at the left margin of the console
terminal paper. Most ODT commands are issued in response to the
asterisk and are composed of the characters and symhbols shown in this
section. By using ODT a word can be examined and changed, the ohject
program can be run in its entirety or in segments, and memory can be
searched for certain words or references to these words. Each command
is explained in detail here; a command surmary is provided in Appendix
C.

7.3.1 Printout Formats

Normally, when ODT prints addresses it attempts to print them in
relative form {form b in Table 7-1). ODT assumes the user has set the
relocation registers with the relocation biases and checks for the
register whose value is closest but less than or equal to the address
to be printed. It then represents this address relative to the
contents of the relocation register. However, if no relocation
register fits the requirement {(that is, the user has not entered the
relocation biases for his obhject modules), the address is printed in
absolute form (form a in Tahle 7-1). Since the relocation registers
are initialized to -1 (the highest numher) the addresses are initially
printed in ahsolute form, If anvy relocation register subsequently has
its contents changed, it may then, depending on the command, qualify
for relative form.

[}

For example, suppose relocation registers 1 and 2 contain 1000 and
1004 respectively, and all other relocation registers contain numbers
much higher, Then the following sequence might occur (the slash
command causes the contents of the location to be printed; the line
feed command ({) accesses the next sequential location):

=77 4/000008}

poRT76 /D0BP0D)

1,900000 /8900#8{ (absolute location 1000)
1, 099002 /@PP0P8B| (absolute location 1002)
2,090000 /9020008 (absolute location 1004)

The printout format is controlled by a sgpecial register called the
Format Register. Initially, this register is set to 0 which instructs
ODT to print addresses relatively whenever possible. However, the
user may access the Format Register by typing §F, thus allowing the
register to be modified. By changing the contents to any non-zero
value, the user instructs ODT to print all addresses in absolute form.

7.3.2 Opening, Changing, and Closing Locations

An open location is one whose contents ODT has printed for
examination, making those contents available for change; a closed
location is one whose contents are no longer available for change,
Several commands are used for opening and closing locations.

Any command used to open a location when another location is already
open first causes the currently open location to be closed., The
contents of an open location may be changed by typing the new contents
followed by a single character command which requires no argument
(i.e., lr *, RETURN, +, @, >, <),

The Slash, /

A location is opened by typing its address followed by a slash. oDT
responds by printing the contents of the location; for example:

*1220/012746
Location 1000 is open for examination and is available for change.

If the contents of an open location are not to be changed, typing the
RETURN key causes the location to be closed; ODT prints an asterisk
and waits for another command.

To change the contents of a location, the location must first be
opened, the new contents are then entered, and finally a command is
given to close the location,

*1000/912746 B12345)
®

In the example above, location 1000 now contains 012345, The location
is closed since the RETURN key was typed after entering the new
contents.

Used alone, the slash reopens the last location opened. For example:

*1000/912345 2348)
¥ /002328

ODT changed the contents of location 1000 to 002340; the RETURN key
instructed ODT to c¢lose the location before printing the *, The
single slash cormand reopened the last location opened, allowing the
user to verify that the word 002340 was correctly stored in location
1000,

Note that if an odd numbered address is specified using a slash, O0DT
opens the location as a byte, and subsegquently behaves as though a
backslash had been typed, as explained next,

The Backslash,

In addition to operating on words, ODT may operate on bytes. One way
to open a byte is to type the address of the byte followed by a
backslash. (N is printed by typing a SHIFT/L if using an LT33 or 35).
ODT not only causes the byte value at the specified address to be
printed, but also interprets the value as ASCII code and prints the
corresponding character (if possible) on the terminal. For example:

1881\ 101 =A

A backslash typed alone reopens the last bhyte opened., If a word was
previously open, the backslash reopens its even byte,

x1002/808004 \024 =

The LINE FEED Key

If the LINE FEED key is typed when a location is open, ODT closes the
open location and opens the next sequential location:

=1980/992348 (| denotes typing the LINE
221892 /012748 FEED key)

In this example, the LINE FEED key caused ODT to print the address of
the next location along with its contents, and to wait for further
instructions. Location 1000 is automaticaly closed by ODT and 1002 is
opened. The open location may be modified by typing new contents.

If a byte location is open, typing the LINE FEED key opens the next
byte location.

The Up~Arrow, tor A

If an up-arrow [(or circumflex) symbol is typed when a location is open
{an up-arrow is produced by typing a SHIFT/N on an LT33 or 35), ODT
closes the open location and opens the previous location. To continue

from the example above:

-

*021002/812740 ¢
01998 /222340

Now location 1002 is closed and 1000 is open. The open location may
be modified by entering new contents.

If a byte location is open, then up-arrow opens the previous byte,

The Back-Arrow,* or

If the back-arrow (or underline) symbol (produced by typing SHIFT/O on
a LT33 or 35) is typed when a location is open, ODT interprets the
contents of the currently open word as an address indexed by the
Program Counter {PC) and opens the location so addressed:

»1096/020086 «~
P21016 /122405

Notice in this example that the open location, 1006, was indexed by
the PC as if it were the operand of an instruction with address mode
67 as explained in Chapter 5,

Modification to the opened location mav be made before either a line
feed, up-arrow, or back-arrow is typed. Also, the new contents of the
location will be used for address calculations when using the
back-arrow command, For example:

*102/0008222 4l {modify to 4 and open next location)
208102 /000111 &1 {modify to 6 and open previous location])
089108 /BOB8GA 100+ (change to 100 and open the location
902282 /{contents) indexed by PC}

Open the Addressed Location, @

The symbol @ (SHIFT/P on an LT33 or 35) may be wused to optionally
modify a location, close it, and then use its contents as the address
of the location to open next.

* 10267001024 @ (open location 1024 next)
PAiR24 /PPP500

» 10067021024 210208 {modify to 2100 and open
PR2100 /177774 location 2100)

Relative Branch Offset, >

The right angle bracket (>) allows the user to optionally modify a
location, close 1it, and then use its low-order byte as a relative
branch offset to the next word to be opened. For example:

*1032/220407 341> (modify to 301 and interpret as a
090636 /00010 relative branch)

Note that 301 is a negative offset (-77). The offset is doubled
before it is added to the PC; therefore, 1034+(-176)=636.

Return to Previous Sequence, <

The left angle bracket (<} allows the user to optionally modify a
location, close it, and then open the next location of a previous
sequence which was interrupted when either a back=arrow, @ sign, or
right angle bracket command was used. (As already mentioned,+~ , @,
and > each cause a sequence change determined by the contents of the
open location. If a sequence change has not occurred, the left angle
bracket simply opens the next location as though using a 1line feed).
This command operates on bhoth words and bytes. For example:

*1032/000407 301> (> causes a sequence change)
P9B636 /900P1D <« (return to original sequence)
PB1034 /901249 @ (@ causes a sequence change)
801040 /0084085 N85 = < (< now operates on byte)
PALB35 \@PA2 = < (< acts like |)

201036 \AB4 =

7.3.3 Accessing General Registers 0-7

The program's general reqgisters 0-7 are opened wusing the following
command format:

*Sn/

where n is an integer in the range 0 through 7 and represents the
desired register. when opened, these registers can be examined or
changed in the same manner as any addressable location. For example:

*30/0000033) (RO was examined and closed)

|

£$4/000474 464) (R4 was opened, changed, closed,)
* /908464 {and verified)

The | ., , or @ commands may be used whenever a register is open.

7.3.4 Accessing Internal Reqgisters

The program's Status Register contains the condition codes of the most
recent operational results and the interrupt priority level of the
object program. The address of this register is accessed by typing
$S. For example:

*$5/00031 1

[

T

In response to $5/ in the example ahove, ODT printed the 1l6=~bit word
of which only the low-order 8 bits are meaningful: Bits 0-3 indicate
whether a carry, overflow, zero, or negative ({in that order) value has
resulted, and bits 5-7 indicate the interrupt priority level (in the
range 0-7) of the object program. (Refer to the PDP-11 PROCESSOR
HANDBOOK for the Status Register format.)

Table 7-2 lists internal registers which may be opened using the §

format.

Table 7-2
Internal Registers

Register Function

$B Location of the first word of the breakpoint
table (see Section 7.3.6).

SM Mask location for specifying which bits are
to be examined during a bit pattern search
{see Section 7.3.9).

SP Location defining the operating priority of
ODT (see Section 7.3.15).

ss Location containing the condition codes ({bits
0-3) and interrupt priority level (bits 5-7);
(explained above),

scC Location of the Constant Register (see
Section 7.3.10).

SR Location of Relocation Register 0, the base
of the Relocation Register Table (see Section
7.3.13).

SF Location of Format Register (explained in
Section 7,3.1).

7.3.5 Radix 50 Mode, X

The Radix 50 mode of packing certain ASCIT characters three to a word
is employed by many DEC-supplied PDP-1l1 system programs and may be
employed by any programmer wusing the CAPS-11 Assembler's .RADS0
directive. ODT allows a method for examining and changing memory
words packed in this way by providing the X command. If the X command
is typed when a 1location is open, ODT converts the contents of the
opened word to its 3-character Radix 50 equivalent and prints these
characters on the terminal, One of the responses in Tahle 7-3 may
then be typed:

Takxle 7=3
Radix 50 Terminators

Response Effect
RETURN key Close the currently open
location
LINE FEED key Close the currently open

location and open the next one
in sequence

Up—-Arrow key Close the currently open
location and open the previous
one in sequence

Any three Convert the three specified
characters whose characters into packed Radix
octal code is 040 50 format

(space) or greater

Legal Radix 50 characters for this last response are:

.] Space 0-9 A-Z

If any other character is +typed, the resulting binary number is
unspecified (that is, no error message is printed and the result is
unpredictable), Exactly three characters must be typed before ODT
resumes its normal mode of operation. After the third character is
typed, the resulting binary number may be stored in the opened
location by closing the location in any one of the ways listed in
Table 7-3. For example:

£1000/942431 X=KBl CBA)
»1000/011421 X=CBA

WARNING

After ODT has converted the three
characters to binary, the binary number
can be interpreted in one of many
different ways depending on the command
which follows., For example:

#1234/963337 X=PRO XIT/D04@@4

Since the Radix 50 equivalent of XIT is
113574, the final slash in the example
causes ODT to open location 113574 and
type out its contents if it is a legal
address, (Refer to Sections 7.4 and 7.5
for a discussion of command legality and
detection of errors,)

7.3.6 Breakpoints

The breakpoint feature allows the user to monitor the progress of
program execution, A breakpoint may be set at any instruction which
is not referenced by the program for data. When a breakpoint is set,
ODT replaces the contents of the breakpoint location with a trap
instruction so that program execution is suspended when the breakpoint
is encountered., The original contents of the breakpoint location are
then restored and ODT regains control.

As many as eight breakpoints numbered 0 through 7 can be set at any
one time. A breakpoint is set by typing the address of the desired
location of the breakpoint followed by ;B. Thus n;B will set the next
available breakpoint (from 0-7) at address n. Specific breakpoints
may be set or changed by the ni;mB command where m is the number of the
breakpoint. For example:

* 10283 B (set breakpoint 0 at address 1020)
1933 B (set breakpoint 1 at address 1030}

* 190423 B (set breakpoint 2 at address 1040}
*183211B (reset breakpoint 1 at address 1032)
"

The ;B command without an argument removes all breakpoints. The ;mB
command is used to remove only one of the breakpoints, where m is the
number of the breakpoint. For example:

*32B (remove breakpoint 2)
*

A table of breakpoints is kept by ODT and may be accessed by the user,
The $B/ command opens the location containing the address of
breakpoint 0. The next seven locations (represented as nhnnnnn)
contain the addresses of the other breakpoints in order, and can be
sequentially opened by using the LINE FEED key. For example:

*5$B/201020 |
nnnnnn /891832
nnnnnn /{address internal to ODT)

In this example breakpoint 2 is not set., The contents printed by ODT
represents an internal address and can be determined by checking the
Linker Load Map ({see Chapter 6).

7.3.7 Running the Program

Program execution is under control of ODT. There are two commands for
running the program: n:;G and n;P. The n;G command is used to start
execution (Go) and n;P to continue execution (Proceed) after halting
at a breakpoint. For example:

* 10023 G

This causes execution to start at location 1000. The program will .run
until a breakpoint is encountered or until program completion. If the
program enters an infinite loop, it must be either restarted or
reentered as explained in Section 7.4.2.

Upon execution of either the n;G or n;P command, the general registers
0-6 are set to the values in the locations specified as $0-$6 and the
processor Status Register is set to the wvalue in the location
specified as 58S,

When a breakpoint is encountered, execution stops and ODT prints Bn;
(where n represents the breakpoint numher) followed by the address of
the breakpoint. Locations can then be examined for expected data.
For example:

*10218;3 3B (breakpoint 3 is set at location 1010)
* 12083 G {execution is started at location 1000)
Bl3091210 {execution is stopped at location 1010)
1

To continue program execution from the breakpoint, type ;P in response
to ODT's last (*).

When a breakpoint is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before
recognizing the breakpoint. This is done by setting a proceed count
using the n;P cormmand. This command allows the user to specify the
number of times the breakpoint is to be encountered before program
execution is suspended (execution will be suspended on the nth
encounter). The count, n, refers only t0 the numbered breakpoint
which most recently occurred. A different proceed count may be
specified for the breakpoint when it is encountered., For example:

B3:2010190 {execution halted at breakpoint 3}
*12505B {reset breakpoint 3 at location 1250}
®43 P {set proceed count to 4 and continue
B33 081250 execution; loop through breakpoint
* three times and halt on fourth

occurrence of the breakpoint)

Proceed counts for other breakpoints may be reset by accessing the
table of proceed counts, explained next,

Following the table of breakpoints (as explained in Section 7.3.6) is
a table of the proceed command repeat counts for each breakpoint,
These repeat counts can be inspected by tvping $B/ followed by typing
nine LINE FEED's, The repeat count for breakpoint 0 is printed (the
first seven line feeds cause the tahble of breakpoints to be printed;
the eighth types the Single-instruction mode, explained in the next
section, and the ninth line feed begins the tahle of proceed command
repeat counts}. The repeat counts for breakpoints 1 through 7 and the
repeat count for the single instruction trap follow in sequence (see
Section 7.,3,8). Before a proceed count is assigned a value by the
user, it is set to 0; after the count has been executed, it is set to
-1. Opening any one of these locations provides an alternate way of
changing the count, as the location, once open, can have its contents
modified in the usual manner (hy typing the new contents and then the
RETURN key). For example:

12

it

nnnnnn/AB1836 { {address of breakpoint 7)

nnnnnn/nnnnnn ¢ {(single instruction address)

nnnnnn/090000 15 | (count for breakpoint 0 is
changed to 15)

nnnnnn/gEPEEE | {count for breakpoint 1)
nnnnnn/@EPEPE § | (count for breakpoint 7)
nnnnnn /Znnnnnn (repeat count for single

instruction mode. The
single instruction address
will be an address internal
to the user program if
single instruction mode

is used.)

The address indicated as the single-instruction address and the repeat
count for single instruction mode are explained next.

7.3.8 Single-Instruction Mode

Using this mode the programmer can specify the number of instructions
to bhe executed bhefore suspension of the program run. The Proceed
command, instead of specifying a repeat count for a breakpoint
encounter, specifies the number of succeeding instructions to be
executed. Breakpoints are disabled when single~instruction mode 1is
operative.

Commands for single-instruction mode are:

1ns Enable single-instruction mode (n can
have any value and serves only to
distinguish this form from the form ;S).
Breakpoints are disabled.

n;P Proceed with program run for next n
instructions before reentering ODT {if n
is missing, it is assumed to be 1, Trap
instructions and associated handlers can
affect the Proceed repeat count, See
section 7.4.2).

15 Disable single-instruction mode.

When the repeat count for single-instruction mode is exhausted and the
program suspends execution, ODT prints:

B8;n
*

where n is the address of the next instruction to be executed. The $B
breakpoint table contains this address following that of breakpoint 7.
However, wunlike the table entries for breakpoints 0-7, direct
modification has no effect,

Similarly, following the repeat {proceed) count for breakpoint 7 is
the repeat count for single~instruction mode. This table entry may be
directly modified, and thus is an alternative way of setting the
single-instruction mode repeat count. In such a case, ;P implies the
argument set in the $B repeat count table rather than assuming 1.

7.3.9 Searches

With ODT all or any specified éortion of memory can be searched for a
specific bit pattern or for references to a specific location.

Word Search, n;W

Before initiating a word search, the mask and search limits must be
specified. The location represented by $M is used to specify the mask
of the search., $M/ opens the mask register. The next two segquential
locations (opened by line feeds) contain the lower and upper limits of
the search. Bits set to 1l in the mask are examined during the search;
other bits are ignored. Then the search object and the initiating
command are given using the n;W command where n is the search object.
When a match is found {(i.e., each bit set to 1 in the search object is
set to 1 in the word being searched over the mask range), the matching
word is printed. For example:

* M/ 020080 1774091 (test high-order eight bits)
Tnnnnn /800008 1200 | (set low address limit)
nnnnnn _/B00938_ 12842) (set high address limit)

* 4003 W {(initiate word search)

21219 /900770
PP1034 /G004AD4A

*

In the above example, nnnnnn is an address internal to ODT; this
location varies and is meaningful only for reference purposes. In the
first line above, the slash was used to open S3SM which now contains
177400; the line feeds opened the next two sequential locations which
now contain the upper and lower limits of the search.

In the search process an exclusive OR (XOR} is performed with the word
currently being examined and the search object, and the result is
MANDed to the mask. If this result is zero, a match has been found and
is reported on the terminal. Note that if the mask is zero, all
locations within the limits are printed.

Typing CTRL/U during a search printout terminates the search.

Effective Address Search, r;E

ODT provides a command to search for words which address a specified
location, The mask register is opened only to gain access to the low
and high limit registers. After specifying the search 1limits (as
explained previously), the command n;E is typed (where n is the
effective address) and the search is initiated,

n

Words which are either an absolute address (argqument n itself), a
relative address offset, or a relative branch to the effective
address, are printed after their addresses. For example:

15M/l77490‘ {open mask register only to gain

nnnnnnZ/EEIBGG 1212 § access to search limits)
nnnnnn//BB1040 19692)

* 19343 E (initiating search)
001316 /PA10AE (relative branch)

8O1054 /PP2T7647T (relative branch)

* 10203 E {initiating a new search)
Ba122 /177774 . (relative address offset})
POLAID /P01020 {absolute address)

]

Particular attention should he given to the reported references to the
effective address, since a word may have the specified bit pattern of
an effective address without actually being so used. ODT reports all
possible references whether they are actually used as such or not.

Typing CTRL/U during a search printout terminates the search.

7.3.10 The Constant Register

It is often desirable to convert a relocatable address into its wvalue
after relocation or to convert a number into its two's complement, and
then to store the converted value in one or more places in a program,
The Constant Register provides a means of accomplishing this and other
useful functions.

When n;C is typed, the relocatable expression n is evaluated to its
six-digit octal value and is both printed on the terminal and stored
in the Constant Register. The contents of the Constant Register may
be called in subsequent relocatable expressions by typing the letter
C. Examples are:

®-4432;C=173346 (The two's complement of 4432 is

¥ placed in the Constant Register)
*1000/001000 C {The contents of the Constant

* Register are stored in location 1000)
*100a: IR {Relocation register 1 is set to

* 1000)

*1,4272)C=0@5272 (Relative location 4272 is reprinted
x as an absolute location and stored

in the Constant Register)

7.3.11 Memory Block Initialization

The Constant Register can be used in conjunction with the commands ;F
and ;I to set a block of memory to a given value, While the most
common value required is zero, other possibilities are plus one, minus
one, ASCII space, etc,

When the command ;F is typed, ODT stores the contents of the Constant
Register in successive memory words starting at the memory word
address specified in the lower search 1limit and ending with the
address specified in the upper search limit,

When the command ;I is typed, the low-order 8 bits in the Constant
Register are stored in successive bytes of memory starting at the byte
address specified in the lower search limit and ending with the byte
address specified in the upper search limit,

For example, assume relocation register 1 contains 1000, 2 contains
2000, and 3 contains 3000, The following sequence sets word locations
1000-1776 to zero, and byte locations 2000-2777 to ASCII spaces,

+5M/200000)) {Open mask register to gain
access to search limits)

nnnnnn /000008 1,0} (Set lower limit to 1000)

nnnnnn /200008 2,-2) (Set upper limit to 1776)

*03 C= 800090 (Constant Register set to zero}

*3F (Locations 1000~1776 set to zero)

™)

+SM/ 2028004

“nnnAnn /p01008_2, 0} (Set lower limit to 2000)

onnnnn /pei7176 3,-1,) (Set upper limit to 2777)

+403 C-P0P04Q (Constant Register set to 40--

ey S ASCII space)

* (Byte locations 2000-2777 are set

to value in low-order 8 bits of
Constant Register)

7.3.12 Calculating Offsets

Relative addressing and branching involve the use of an offset-=the
number of words or bytes forward or backward from the current location
to the effective address. During the debugaing session it may be
necessary to change a relative address or branch reference by
replacing one instruction offset with another. ODT calculates the
of fsets in response to the n;0 command.

The command n;0 causes ODT to print the 16~hit and 8-hit offsets from
the currently open location to address n. For example:

*346/000034 41430 000R44 P22 22)
* /000022 -

In the example, location 346 is opened and the offsets from that
location to location 414 are calculated and printed. The contents of
location 346 are then changed to 22 (the 8-bit offset) and verified on
the next line.

The 8-bit offset is printed only if it is in the range 128 ({decimal)
to 127 (decimal) and the l1l6-bit offset is even, as was the case above,
For example, the offset of a relative branch is calculated and
modified as follows:

+1034/1@3421 183430 177776 377 \@21 = 377)
*/103777

7-16

Note that the modified low-order byte 377 must be comhined with the
unmodified high-order byte.

7.3.13 Relocation Register Commands

The use of the relocation registers has been defined in Section 7.2.
At the beginning of a debugging session it is desirable to preset the
registers to the relocation biases of those relocatable modules which
will be receiving the most attention.

This can be done by typing the relocation bias followed by a semicolon
and the specification of relocation registers, as follows:

r;nR

r may be any relocatable expression and n is an integer from 0 to 7.
If n is omitted it is assumed to be 0. As an example:

* 1000 5R (Sset relocation register 5 to 1000)
x5, 1085 5R {Add 100 to the contents of
relocation register 5)

(L]

In certain uses programs may be relocated to an address below that at
which they were assembled. This could occur with PIC coding which is
moved without the use of the Linker. In this case the appropriate
relocation bias would be the 2's complement of the actual downward
displacement., One method for easily evaluating the bias and entering
it in the relocation register is illustrated in the following example.

Assume the program was assembled at location 5000 and was moved to
location 1000, Then the sequence:

* 18005 1R
*1,-5000; IR
*

enters the 2's complement of 4000 in relocation register 1, as
desired.

Relocation registers are initialized to =1, so that unwanted
relocation registers never enter into the selection process when ODT
searches for the most appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation
registers to -1, type :R.

ODT maintains a table of relocation registers, beginning at the
address specified by $R. Opening SR ($R/) opens relocation register
0. Successively typing the LINE FEED key opens the other relocation
registers in sequence, When a relocation register is opened in this
way, it may be modified just as any other memory location.

7.3.14 The Relocation Calculators

When a location has been opened, it is often desirable to relate the
relocated address and the contents of the location back to their
relocatable values., To calculate the relocatable address of the
opened location relative to a particular relocation bias, type nl!,
where n specifies the relocation register. This calculator works with
both opened bytes and words., If n is omitted, the relocation register
whose contents are closest but 1less than or equal to the opened
location 1is selected automatically by ODT. In the following example,
assume that these conditions are fulfilled by relocation register 2,
which contains 2000. To £find the most likely module that a given
opened byte is in, the user types:

25000811 = 1=2,08088580

Typing nR after opening a word causes QDT to print the octal number
which equals the value of the contents of the opened location minus
the contents of relocation reqister n, If n is omitted, ODT selects
the relocation register whose contents are closest but less than or
equal to the contents of the opened location. For example, assume the
relocation bias stored in relocation register 1 is 001234; then:

*1,588/024550 1R=1,023314

The value 23314 is the contents of 1,500, relative to the base 1234,
An example of the use of both commands follows,

Assuming relocation register 1 contains 1000 and relocation reqister 2
contains 2000, then to calculate the relocatable address of location
3000 and its contents relative to 1000 and 2000, the following can be
performed:

*3000/205678 11=1, 002030 2!=2,001080 1R=1,004678 2R=2, 003670

7.3.15 ODT's Priority Level

$P represents a location in ODT which contains the priority level at
which ODT operates. If SP contains the value 377, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise
SP may contain a wvalue between 0 and 7 corresponding to the fixed
priority at which ODT will operate,

To set ODT to the desired priority level, open $P. ODT prints the
present contents, which may then be changed:

*SP/000006 377)
[

If $P is not specified, its value will be seven,

Breakpoints may be set in routines at different priority levels. For
example, a program running at a low priority level may use a device
service routine which operates at a higher priority level. If a
breakpoint occurs from a low priority routine, if ODT operates at a
low priority, and if an interrupt occurs from a high priority routine,
then the breakpoints in the high priority routine will not be executed

7-18

2]

\

1t

since they have been removed when the low priority breakpoint

occurred, That

in which ODT is running will occur and any breakpoints

recognized.

For example:

*1000: B
*20031 8
*5003G

B3 1280

*

will

is, interrupts set at a priority higher than the one

not be

If a higher level interrupt occurs while ODT is waiting for input, the
interrupt will be serviced and no breakpoints will be recognized.

NOTE

If the user is debugging a program which
utilizes double=buffered cassette I/0
(especially in formatted modes), he may
find it useful to set ODT's priority to
5. This will allow cassette flags to
interrupt ODT but will lock out terminal
printer, keyboard, and line printer
interrupts. If this is not done and a
breakpoint is encountered while cassette
I/0 1is occurring, timing errors will
occur,

7.3.16 ASCII Input and Output

ASCII text may be inspected and changed using the command:

r;nA

where r is a relocatahle expression and n is a character count.
is omitted it is assumed to be 1,

location r, followed by a carriage return/line feed. One
following may then be typed:
RETURN ODT outputs a carriage return/line

feed and an asterisk and waits for

another cormand.

LINE FEED ODT opens the byte following the
last byte output.

up to n ODT inserts the text into memory

charac- starting at location r. If less

ters of than n characters are typed, ter-

text minate the command by typing
CTRL/U, causing a carriage

return/line feed and an asterisk to
be output as for RETURN,., However,
if exactly n characters are typed,
oDT responds with a carriage

If n

ODT prints n characters starting at

of the

return/line feed, the address of
the next available byte and a
carriage return/line feed/asterisk.

Note that n may actually be expressed as a relocatable expression and
could accidently be gquite large. There is no safequard against this
in obpT.

7.4 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
ODT, However, it does provide a better understanding of how ODT
performs some of its functions; in certain difficult debugging
situations, this understanding is necessary.

7.4.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: cormand decoding, command execution, and wvarious
utility routines.

The command decoder interprets the indiwvidual commands, checks for
command errors, saves input parameters for use in command execution,
and sends control to the appropriate cormmand execution routine,

The command eXecution routines take parameters saved by the command
decoder and uses the utility routines to execute the specified
command. Command execution routines exit either to the object program
or back to the command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/O,
They are used by both the command deccder and the command executers.

7.4.2 DBreakpoints

The function of a breakpoint is to give control to ODT whenever the
user program tries to execute the instruction at the selected address.
Upon encountering a breakpoint, all of the ODT commands can be used to
examine and modify the program,

When a breakpoint is executed, ODT removes all breakpoint instructions
from the user's code soc that the locations mav be examined and/or
altered. ODT then types a message on the console terminal in the form
Bm;n where n is the breakpoint address (and m is the breakpoint
number). The breakpoints are automaticallv restored when execution is
resumed.

One restriction in the use of breakpoints follows: the word where a
breakpoint has been set must not be referenced by the program in any
way since ODT has altered the word. Also, no breakpoint should be set
at the 1location of any instruction that clears the T=bit. For
example:

MOV #2483, 177776 3 SET PRIORITY TQ LEVEL 5

7-20

Fss

NOTE

Instructions that cause or return from
traps (e.g., EMI', RTI) are likely to
clear the T-hit, since a new word from
the trap vector or the stack will be
loaded into the Status Register.

A breakpoint occurs when a trace trap instruction (placed in the

program by ODT) is executed.

steps are taken:

11,

12,
13.
14.
15.
le.

17.

18.

Set processor priority to seven (automatically set by
trap instruction).

Save registers and set up stack.
If internal T=bit trap flag is set, go to step 13.
Remove breakpoints,

Reset processor priority to ODT's priority or user's
priority,

Make sure a breakpoint or single=instruction mode caused
the interrupt.

If the breakpoint did not cause the interrupt, go to
step 15.

Decrement repeat count.

Go to step 18 if non-zero; otherwise reset count to one.
Save console terminal status (refer to the section
entitled 'Procedure for Saving and Restoring Console

Terminal Status' below).

Type message about the breakpoint or single-instruction
mode interrupt.

Go to command decoder,

Clear T=bit in stack and internal T-bit flag.
Jurmp to the Go processor.

Save console terminal status.

Type BE (Bad Entry) followed by the address,

Clear the T-bit, if set, in the user status and proceed
to the command decoder.

Go to the Proceed processor, bypassing the console
terminal restore routine,

user

When a breakpoint occurs, the following

Note that steps 1-5 inclusive take approximately 100 microseconds
during which time interrupts are not permitted to occur (ODT is
running at level 7).
When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.

2, The processor priority is set to seven.

L]

3. The T-bit flags (internal and user status) are set,

4, The user registers, status, and Program Counter are
restored.

5. Control is returned to the user. —

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of
the breakpoint sequence are executed, breakpoints are
restored, and program execution resumes normally.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction
causing a trap, the following occurs:

1. When the breakpoint occurs as described above, ODT is
entered.

2, when ;P is typed, the T-bit is set and an I0T, EMT, T
TRAP, or other trapping instruction is executed.

3. This causes the current PC and status (with the T=bit
included) to be pushed on the stack.

4, The new PC and status (no T-hit set) are obhtained from
the respective trap vector.

5. The whole trap service routine is executed without any
breakpoints.

6. When an RTI is executed, the saved PC and PS (including
the T-bit)} are restored. The instruction following the
trap-causing instruction is executed, If this
instruction is not another trap-causing instruction, the
T-bit trap occurs, causing the breakpoints to be
reinserted in the user program, or the
single-instruction mode repeat count to be decremented.
If the following instruction is a trap=causing
instruction, this sequence is repeated starting at step
3.

NOTE

Exit from the trap handler must be via
the RTI instruction, otherwise the T-~bit
is lost. ODT cannot gain control again
since the breakpoints have not yet bheen
reinserted.

.

Note that the ;P command is illegal if a breakpoint has not occurred
(ODT responds with ?); ;P is legal, however, after any trace trap
entry.

The internal breakpoint status words have the following format:

1. The first eight words contain the breakpoint addresses
for breakpoints 0-7, (The ninth word contains the
address of the next instruction to be executed in
single-instruction mode.)

2. 'The next eight words contain the respective repeat
counts. The following word contains the repeat count
for single-instruction mode.)

These words may be changed at will, either by using the breakpoint
cormands or by direct manipulation with $B.

wWhen program runaway occurs {that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where a breakpoint has not been placed) ODT may be given control as
follows:

1. Press the HALT key to stop the computer.

2. If ODT was linked with the user's program, start ODT at
any one of these addresses:

a) Its entry address (contents of 1locations where
breakpoints were set are not restored to their
original contents).

b} 1Its entry address + 2 (contents of 1locations where
breakpoints were set are restored; all breakpoints
are removed and all relocation reqgisters are
cleared).

c) Its entry address + 4 (simulates a breakpoint).

3. If ODT was not linked with the user's program, but the
user executed a LOAD/G ODT or a .R ODT, the entry
address of ODT in an 8K system is 14000, One of the
restart addresses in 2 abhove may then be used,

ODT prints an (*) indicating that it is ready to accept a command,

If the program being debugged uses the teleprinter for input or
output, the program may interact with ODT to cause an error since ODT
uses the teleprinter as well., This interactive error will not occur
when the program being debugged is run without ODT,

1. 1If the teleprinter interrupt is enabled upon entry to
the ODT break routine and no output interrupt is pending
when ODT is entered, ODT generates an unexpected
interrupt when returning control to the program.

2, If the interrupt of the teleprinter reader {the
keyboard) is enabled upon entry to the ODT break routine
and the program is expecting to receive an interrupt to
input a character, both the expected interrupt and the
character are lost.

3. 1If the teleprinter reader (keyboard) has Jjust read a
character into the reader data buffer when the ODT break
routine is entered, the expected character in the reader
data buffer is lost.

Procedure for Saving and Restoring
Consocle Terminal Status

Upon entering the console terminal SAVE routine, the following occurs:

l. Save the conscle terminal keyhoard status register
(TKS) .

2. Clear interrupt enable and maintenance bits in the TXS.

3. Save the console terminal printer status register (TPS).

4. Clear interrupt enable and maintenance bits in the TPS5,
To restore the console terminal status:

1. Wait for completion cof any I/0 from ODT,

2. Restore the TKS.

3. Restore the TPS.

WARNINGS

If the console terminal printer
interrupt 1is enabled upon entry to the
ODT break routine, the following may
occur:

l. If no output interrupt is
pending when ODT is entered, an
additional interrupt always
occurs when ODT returns control
to the user,.

2, If an output interrupt is
pending upon entry, the
expected interrupt occurs when
the user reqgains control.

If the teleprinter keyhoard is busy or
done, the expected character in the
reader data buffer is lost.

If the teleprinter kevboard interrupt is
enabled upon entry to the ODT break
routine, and a character is pending, the
interrupt (as well as the character) is
ost.,

"t

7.4,3 Searches

The word search allows the user to search for bit patterns in
specified sections of memory. Using the $M/ cormand, the user
specifies a mask, a lower search limit ($M+2), and an upper search
limit (SM+4). The search object is specified in the search command
itself,

The word search compares selected bits (where ones appear in the mask)
in the word and search object. If all of the selected bits are equal,
the unmasked word is printed.

The search algorithm is:
l, Fetch a word at the current address.
2., XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.

4, If the result of step 3 is zero, type the address of the
unmasked word and its contents, Otherwise, proceed to
step 5.

5. Aadd two to the current address. 1If the current address
is greater than the upper limit, type * and return to
the command decoder, otherwise go to step 1.

Note that if the mask is zero, ODT prints every word between the
limits, since a match occurs every time (i.e., the result of step 3 is
always zerol.

In the effective address search, ODT interprets every word 1in the
search range as an instruction which is interrogated for a possible
direct relationship to the search object. The mask reqister is opened
only to gain access to the search limit registers.

The algorithm for the effective address search (where X denotes the
contents of X, and K denotes the search object) is:

l. Fetch a word at the current address X,

2, If (X)=K [direct reference], print contents and go to
step 5.

3. If (X)+X+2=K [indexed by PC], print contents and go to
step 5.

4. If (X) is a relative branch to K, print contents.

5. Add two to the current address. If the current address
is greater than the upper limit, perform a carriage
return/line feed and return to the command decoder;

otherwise, go to step 1.

7.5 ERROR DETECTION

ODT detects two types of error: illegal or unrecognizable command and
bad breakpoint entry. ODT does not check for the legality of an
address when commanded to open a location for examination or
modification. Thus the command:

17771747

references nonexistent memory, thereby causing a +trap through the
vector at location 4, RESMON sets location 4 to produce the message:

$TRAF nnnnnn

However, if the user program modifies location 4 or 6, the results of
such a trap are unpredictable.

Similarly, a command such as:
s20/

which references an address eight times the value represented by §2,
may cause an illegal (nonexistent) memory reference,

Typing something other than a legal command causes ODT to ignore the
command, print:

(echoes illegal command) ?
*

and wait for another cormand. Therefore, to cause ODT to ignore a
command Jjust typed, type any illegal character (such as 9 or RUBOUT)
and the command will be treated as an error and ignored.

ODT suspends program execution whenever it encounters a breakpoint by
trapping to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BE@1542

*
and waits for another command. In the example ahove, BE001542 denotes
Bad Entry from location 001542, A bad entry may be caused by an
illegal trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.

7.6 EXAMPLE USING ODT

The user has a program which he has assembled with PAL to produce a
listing. He wishes to run the program under ODT to demonstrate the
use of breakpoints:

ODT is then called.
an address internal to ODT).

CAPS11 PAL VBl 05/25/73 PAGE

3

ol

3 PROGRAM TO DEMONSTRATE ODT

3

Q00eal R1=21
poveA2 R2=%2
PO2002 RO=Z0
PO2PB3 R3=Z3
P0P206 SP=2X6
P0000@ .ASECT
201200 .=10082
001000 912786 START: MOV
Q29600
PB1004 127083 MoV
ofepee
PA1P12 PI2700 LOOPZ: MOV
poe200
PP1D14 205001 CLR
3210216 905291 LOOP1: INC
PR102@ 2O5300 DEC
221022 @91375 BNE
PP1824 PES5S3IP2 DEC
201026 PP137D BNE
201030 PPQ0L0 HALT
01000 « END

CAPS11 PAL VB! B5/25/73 PAGE

LOOP1 2210816 LOQOP2
R1 = 1006901 R2
Sp =2000006 START

PPPARR2 ERRORS

+L I+ TESODT.LDA

0ODT Ve
A{tlBEEJBB

x 102438
(t$9/601922
NNNNNN /901024
NNNNNN /117776
LNNNNNN /117776
» 10003 G
~-BRs 021922
*$6/000600
*$3 /000002
L ¥ I
*$0/8P0177
»$1 /000001
*$B/001922

B ¢

.

#600: SP
#2,R3

#2090, RO

og2

vA1210

=ZpPagez

Re1200

?he program is stored on cassette drive 1 as TESODT,LDA,
into memory using the LOAD command:

The debugging process follows (NNNNNN

3SET STACK PTR

3S5ET LARGE LOOP COUNTER

JINCREMENT R1 FROM B TO 200
3 DECREMENT RP FROM 298 TO ©
3NOT DONE SMALL LOOP YET
3RESTART SMALL LOOP

JIF R3 NOT ZERO YET

R =1000000
R3 =2909003
. = 981832

and is loaded

represents

E

G

L

J

L

NNNNNN /pp1824
r+ 18@3 P

BA:;pa 1022
*5$3/0000802

+$1/000181

xSB/0010822

NNNNNN /spei1024

(%763 P

Bd: 901022

{x53/000002

«51/000177

| » 50/000001

)P

B 981822

* $0/020009

1t51/eaﬁeea
*53/000002

D 1¢sa/099077

r«3 P
Bl;do1824
537000002
*SB/PR1R22
NNNNNN /0019824
'« 10263 B
*5B/p@10@22
NNNNNN /70010824
NNNNNN 7001026
LNNNNNN /7117776
*$5/000804
(a3 P
B23 001026
*53/000001
*§$S/7000000
»SB /000000
L-$1/000200
(%3 P
B2 001022
1#50/003177

i,

*$1/000001
*$3/000001
f«2083 P

Bl:oo1024
*»50/200000

1 +51/000200

*x$3/000001
Lk 55/000004
*;P

B2: 0010246
*5$5/000004
*53/000000
*1030;: 8B
3P

B3 0010230

MixtC

.

* 1924/005302 5303

7-28

Set breakpoint 0 within the small 1loop; set the next
available breakpoint (1) within the large loop.

Examine ODT's breakpoint table ~ 0 and 1 are properly
assigned; start the program.

Breakpoint 0 is encountered; registers 3 and 6 are examined,
An illeqgal command (#) is typed, which ODT answers with a 2.
Registers 0 and 1 and the ODT breakpoint table are examined.

Proceed through 100(octal}) occurrences of breakpoint 0;
examine the registers--3 is unchanged, 0 and 1 are
decrementing and incrementing properly.

Proceed through 76 more occurrences of breakpoint 0; the
registers are examined and seem correct,

Proceed from Lreakpoint 0, The small loop has finished, but
the instruction at location 1024 is incorrect (it should be
DEC R3): it is corrected.

Execution proceeds; breakpoint 1 is encountered

The next available breakpoint (which is bhreakpoint 2) is set
as location 1026, the user status Z bit has heen set,

Breakpoint 2 is encountered; register 3 has been decremented;
the Z bit is clear so the branch to loop 2 will be taken.

Breakpoint 0 is encountered; registers 0 and 1 have been
reset,

Continue through all iterations of the small loop.
Breakpoint 1 is encountered. Register 3 contains 1l; the user
status Z bit is set.

Breakpoint 2 is encountered; the 2 bit is still set and
register 3 contains 0; program execution will fall through
the branch. A breakpoint is set at the HALT instruction.

The breakpoint at the HALT is encountered. A +C is typed to
return to the Keyboard Monitor.

0

——

CHAPTER 8

PERTPHERAL INTERCHANGE PROGRAM

The Peripheral Interchange Program (PIP) provides the user with a
means of transfering files between any of the permanent devices which
are available on his system (as listed in Tahle 3-2) including the
high-speed reader and punch. In addition, PIP provides the capibility
for deleting files from a cassette, zeroing a cassette, and making
~multiple copies of a cassette.

B.1l CALLING AND USING PIP
PIP is called from the System Cassette by typing:

.R PIP
in response to the dot printed by the Keyboard Listener. The Command
String Interpreter responds by printing an asterisk ({*) when it is
ready to accept input/output specifications. The user may enter his
command string even though the remainder of PIP is being loaded into
memory simultaneously.

Control is returned to PIP after each execution of an I/0 command
string.

8.1.1 PIP Options

The options listed in Table 8-1 may be used by PIP with the following
results:

8-1

Table 8-1
PIP Options

Option Meaning
/A Used with an output filename to designate
that the header bit be set to ASCII (the file
type is otherwise assumed to be binary). If

a file 1is transfered from the paper tape
reader to cassette using the /A option, a +2Z

character (designating end-of=file) is
automatically appended to +the end of the
file,

/C Allows the command string to be broken into

one or more lines.

/D Causes the filename{s) indicated in the
command line to be deleted from the specified
cassette,

/P Requests that the system prompt the user to

change cassettes on the indicated drive
before an attempt is made to access the file.
The system prints:

L Xy

where # represents the number of the
appropriate drive. When the user has mounted
the proper cassette, he may type any
character on the keyboard to continue
execution,

/% Indicates that all cassettes on the unit
drives specified in the command line are to
be zeroed.

PIP does not support the /O overflow option. File transfers must not
exceed a single cassette,

8.1.2 Input and Output Specifications

PIP allows four basic operations: cassette zero, file deletion,
cassette copy, and file transfer. No default extensions are assumed
by PIP, so the user must be sure to always indicate extensions in his
command line,

CASSETTE ZERO
The cassette zero function is provided in PIP to allow a user who is

performing a series of PIP commands the option of zeroing a cassette
without returning to the Keyhoard Monitor (to use the ZERQ command}.

8-2

1 4]

The form of the command is:
*[CT]$:/2/0PT,... [CT]4#:/0PT[=]

The device, if specified, must be cassette, so only the drive number
need be entered; unit 0 is assumed if no number is indicated. Any
number of cassettes may be indicated in the command 1line; the /Z
option is necessary only once after the first cassette specification.
The /C and /P options are optional, as is the I/0 separator (=, <, or
+). The input field must be empty if a separator is used.

An example of use of the PIP zero function might be the following case
in which the user wishes to zero several cassettes:

:Gl/Z-II:G:/P;lIJUE /Py 1t =

/Z indicates that the PIP zero function is requested; the cassettes on
units 0 and 1 are zeroed; the user is then prompted (via /P) to change
cassettes; he mounts different cassettes on drives 0 and 1 and then
types any character on the console terminal keyboard to continue
execution. The newly mounted cassettes are also zeroed; again he 1is
prompted to change cassettes, and so on.

FILE DELETION
File deletion is performed using a command line in the following form:
*[CT] $:FILE1l.EXT/OPT, {CT] 4#:FILE2 ,EXT/CPT,... [=]

Cassette drives 0 and 1 are the only legal devices and drive 0 is the
default device. Filenames are indicated only on the output (left}
portion of the cormand line; the input portion of the command line
must remain empty. Options allowed are /D, /C and /P; the /D option
is necessary only once after the first file specification.

Any number of files may be indicated in the command string. Those
files specified are then deleted from the cassette directory and are
replaced by an *EMPTY header in the directory listing. If PIP detects
that the sentinel file immediately follows an *EMPTY file, it will
also delete that *EMPTY file from the directory. PFor example, assume
the directory of cassette drive 0 is:

21-MAR-73

COPSO LDA 91-DEC-72

BLANKS DAT 21-MAR-73

SORT LST 21-MAR-T3

TORN ASC 19-MAR-73
and the user types:

*BLANKS«DAT /D> TORN. ASC=

These two files will be deleted leaving the directory as follows:

21-MAR~T3

COPSO LDA B1-DEC-T2
*EMPTY --
SORT L5T 21-MAR=-73

If more than one file exists on a cassette under the same filename,
all files under that name will be deleted.

CASSETTE COPY

The PIP copy function is used to ‘clean up' cassettes containing
*EMPTY headers and to make multiple copies of a cassette. The form of
the command string is:

*[CT] #:=([CT]#:/0PT

Since cassettes are the only legal devices, only the cassette number
need be specified; cassette drive 0 is the default device. The only
option allowed in the copy function is /C and only one input and one
output gdevice specification may he indicated. For example:

:CTI:-B:

The cassette on drive 1 is first zeroed, and the entire contents of
cassette drive 0 are then copied to the cassette on drive 1, producing
an exact copy of cassette 0, Dates are copied as they appear on the
original cassette. This copy function of PIP is particularly useful
in making multiple copies of the System Cassette,

FILE TRANSFER

A file transfer using PIP is initiated by a command in one of the
following formats:

*DEV:FILENA.EXT /OPT=DEV:FILEl.EXT/OPT, .. .DEV:FILEn ,EXT/OPT
or

*DEV:0UT1,EXT/OPT, . ..DEV:OUTn,EXT/OPT=DEV: IN1,EXT/OPT,.../C

,DEV:INn,EXT/OPT

DEV represents any of the legal permanent devices (listed in Table
3=2), Any number of input specifications are allowed. If only one
output specification is indicated, all input files will be combined
under the filename and/or device designated in the output field; the
input files will be combined in the order in which they are listed in
the command string. Otherwise, each input file must have a
corresponding output filename and/or device, and transfers will be
performed on a one-for=-one basis. Options allowed in the output
portion of the command line are /P, /A, and /C. Options allowed in
the input portion are /P, /F and /C.

For example:

:LP::I:ABC-DAT-B:FIRST.ASC:I:FINT-DATIP

=

P

A listing is to be output on the line printer, First the file ABC,DAT
on cassette drive 1 is output, then without interruption FIRST.ASC on
drive 0, and finally FINT.DAT. Before FINT,DAT is output, the system
pauses and prints:

17

The user should make sure the correct cassette is mounted on drive 1
and then type any character on the keyboard. The listing will
continue.

After each execution of a PIP command string, control returns to PIP;
the Command String Interpreter prints an asterisk to indicate that it
is ready to accept another PIP command string, The user might next
enter a cormand line such as the following:

*LPt, 1: AFT.DAT, SIGNA. PAL /A= AFT.DAT, AFT . DAT, 51 GNA. PAL

This command transfers the file AFT,DAT to both the line printer and
cassette drive 1, and then transfers SIGNA.PAL in ASCII mode to
cassette drive 1, If the number of input files is not equal to the
number of output specifications {(providing there is more than cne
output specification), an error message is printed.

To return to the Monitor, type +C.

8.1.3 Restarting PIP

PIP is automatically restarted after each execution of a command line;
the CSI prints an asterisk indicatng that the user can enter a new
command. A CTRL/P typed during execution of a command will cause the
current output file to be clesed and control will be returned to the
CSI.

8.2 ERROR MESSAGES
The following error messages can occur during incorrect usage of PIP:

Table 8-2
PIP Error Messages

Message Meaning
?BAD TAPE
?BAD TAPE? Hardware checksum error {may also be

caused by READ operations initiated on
a cassette which is positioned after
the sentinel file); a question mark
following the message indicates that
the error is not fatal; the user may
mount ancother cassette and type any
character on the keyboard to continue
execution,

(Continued on next page)

Table 8~2 {(Cont.)
PIP Error Messages

Message

Meaning

?EOM

?EXCESS INPUT FILES

?EXCESS OQUTPUT FILES

?FILE NOT FND?

?ILLEGAL DEVICE

?ILLEGAL INPUT LIST

?ILLEGAL OUTPUT LIST

?I/0 CHAN CONFLICT

?NO FILE NAME

?OFFLINE x

?SWITCH ERROR 'x'?

Indicates an out-of-paper condition
for the line printer, console
terminal, or paper tape punch,

The number of input files exceeds the
numher of output files {providing the
number of output files is greater than
one); this error occurs during use of
the file transfer function.

The number of output files exceeds the
number of input files; this error
occurs during use of the file transfer
function.

The specified file was not found on
the cassette indicated; the user may
mount another cassette and type any
character on the keyboard to continue
the search.

An illegal device was indicated for
the PIP function used.

An input list was indicated where not
allowed (as when using the zero,
delete, and copy functions), or an
illegal command was entered.

An output list was indicated where not
allowed (as when wusing the copy
function}.,

An attempt was made to open an input
file on a cassette already open for
output, or vice versa.

A filename was not indicated in a
command line which required one.

The cassette is not properly mounted
on drive x. The user should correctly
mount the cassette so that execution
can continue,

An illegal switch was indicated in the
command line, where 'x' represents the
switch in error. The check 1is made
for as many as 10 illegal switches in
any one command line, Typing any
character on the keyboard will cause
PIP to ignore the switch and continue
execution.

Continued on next page)

Table 8-2 (Cont.)
PIP Errcor Messages

Massage Meaning
?TAPE FULL i
?TAPE FULL? Available space for an output file 1is

full. A question mark following the
message indicates that the error is
not fatal; the user may mcunt another
cassette and type any character on the
keyboard to continue execution.

2ZWRT LOCK x The cassette is write-locked; b 4
represents the drive number, The user
should dismount the cassette {the
OFFLINE error message will then be
printed) , write-enable the cassette,
and remount it. Execution will
continue.

4

CHAPTER 9

INPUT/OUTPUT PROGRAMMING

The majority of I/0 in the CAPS-11 System is done wusing RESMON, the
part of the Monitor which contains routines to handle all file
structured cassette I/0 and all teleprinter, keyboard and line printer
input and output.

RESMON is brought into memory by bootstrapping the system or by typing
a CTRL/C (4C) while running another system program. RESMON loads the
following interrupt and trap vectors: console terminal keyboard and
printer, 1line printer, cassette, timeout, breakpoint, illegal memory
reference, stack overflow, power fail, EMT, TRAP and IOT, The RESMON
I/0 handlers remain in memory unless the user does an overlay load
{using the Monitor LOAD command; see Chapter 3}.

Simple I/0O requests can be made by specifying devices and data forms
for interrupt-controlled data transfers. These regquests can be
occurring concurrently with the execution of a running user program;
maltiple I/0 devices may be running single or double buffered I/0
processing simultaneocusly.

9.1 COMMUNICATING WITH RESMON
RESMON commands can be divided into two categories:

1. Those concerned with establishing necessary conditions
for performing input and output, and

2. Those concerned directly with the transfer of data.

When transfer of data is occurring, RESMON is operating at the
priority level of the device., The calling program runs at its own
priority level, either concurrently with the data transfer, or
sequentially. Before using data transfer commands, note the
following:

1. Device specifications are made by referencing device
numbers. Devices and their corresponding numbers are
listed in Table $-1.

2. The buffer, whose address is specified in the code, in
most cases must be set up with information about the

data.

In non-data transfer commands where an address or device number does
not apply, the device number should be set to zero; the address is
ignored by RESMON and may be any number. Addresses or codes may be
specified symbolically.

Communication with RESMON is accomplished by IOT (Input/Output Trap)
instructions in the wuser's program., Each IOT is followed by two words
consisting of one of the RESMON commands and its operands in the
following format:

10T
«BYTE {(command code), (device #)
+HORD (address)

As an example, the following program segment illustrates a simple
input=-process-output sequence, It includes the setting up of a single
buffer, a formatted ASCII READ into the buffer, a wait for completion
of the READ, processing of data just read, and a WRITE command from
the buffer., (RESMON commands used in this example are explained in
detail later in the chapter.}

epeRo1 RESET=1 JASSIGN RESMON COMMAND
A2P0995 READ=5S J CODES
PAERB3 WAl TR=3
PPBRR4 WRI TE=4
00PPPA PBAAP4 START: 10T JISSUE RESET lGT
200002 921 «BYTE RESET.,®D
AOPRD3 0D
A0DPVA R00D0 «WORD @
PAPPB6 PPBPBA HREAD: [OT 3 TRAP TQ RESMON
209010 eBs +BYTE READ, 3 3 SPECIFY BUFFER AND READ
peooe11 Ba3
PRRG12 PPe13D° +» WORD BUFFER JFROM KBD (DEVICE 3) UNTIL
JLINE FEED OR FORM FEED
PPA014 PDBAGA WAIT: 10T 3 TRAP TO RESMON
Beaa1s 283 « BYTE WAL TR»3 JWAIT FOR KBD (DEVICE 3)
POOD17 203
3TO FINISH
P2Y20 AOYB14" «WORD WAIT 3 BUSY RETURN ADDRESS WHILE
. BWAITING FOR KBD TO FINI SH
(process huffer)
goai122 papera 10T 3 TRAP TO RESMON
aR2124 204 «BYTE WRITE,2 JWRITE TD TELEPRINTER
aea125 oae
202126 QRB138" » WORD BUFFER J(DEVICE 2), SPECIFY BUFFER
208130 906188 BUFFER: 100 3 BUFFER SIZE IN BYTES
280132 Q0R00R %] s CODE FOR FORMATTED ASCII
PRB134 990000 [3MGDE, RESMON WILL SET HERE
3 THE NUMBER OF BYTES READ
PeR23s =L+ 100 3 STORAGE RESERVED FOR 190
3BYTES
PO2000 « END START

In more complex programming it is likely that more than one buffer
will be set up for the transfer of data, so that data processing can
occur concurrently rather than sequentially, as here.

9.2 DEVICE ASSIGNMENTS

I/0 devices in the CAPS=11 System are fixed. The programmer
references them by using RESMON and specifying a device number from
Table 9-1. The device assignment numbers are:

Table 9-1
Device Assignments

Device Number

Cassette Drive 0

Cassette Drive 1

Console Terminal Printer
Console Terminal Keyboard
Line Printer

WO

Thus, in the following example:

10T
«BYTE READs 1
+WORD STORE

data is read from device 1, which is cassette drive 1,

9.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS

Use of the data transfer commands (READ and WRITE) requires the
setting up of at least one buffer. This buffer is used not only to
store data for processing, but to hold information regarding the
quantity, form, and status of the data., All formatted I/0 and all
unformatted I/0 {(excluding unformatted cassette I/0) use one type of
buffer; unformatted cassette I/0 requires a special buffer.

9.3.1 Buffer Arrangement for Formatted I/O
and Unformatted I/Q (Excluding Cassette)

The buffer area for all I/0 except unformatted cassette consists of
two sections: the buffer header and the buffer itself. The non-data
portion of the buffer is called the buffer header and precedes the
data portion. In data transfer commands, the address of the first
word of the buffer header is specified in the second word after the
IOT command.,

9-3

NOTE

PRESMON uses the buffer header while
transferring data, The user's program
must not change or reference it (other
than to check status bits),

The arrangement of the buffer is as follows:

BUFFER SIZE (in Bytes)

STATUS MODE

BYTE COUNT

DATA

Buffer Size

The first word of the buffer contains the maximum size {in bytes) of
the data portion of the buffer and is specified by the user as an
unsigned integer. RESMON will not store more than this many data
bytes on input. Buffer size has no meaning on output.

Mode Byte

The low-order byte of the second word holds information concerning the
mode of transfer. A choice of four modes exists:

Mode Coded as:
Formatted ASCII 000 {or 200 to suppress echao)

Formatted Binary 001

Unformatted ASCII 002 (or 202 to suppress echo}

Unformatted Binary 003

The term echo applies only to the console terminal keyboard. Data
transfers from other devices never involve an echo. A diagram

illustrates the format of the Mpde Byte:

1=NG ECHO*

0= ECHO ‘
12 UNFORMATTED

0= FORMATTED

1= BINARY
0=ASCO

*NQ ECHO SET FOR KEYBOARD OMLY

Figure 9-1 Mode Byte

Modes are further discussed in Section 9.4,

9-4

i

L]

Status Byte

The high-order byte of the gsecond word of the buffer header contains

information set by RESMON on the status of the data transfer as
follows:

Bits 0-4 Contain the non-fatal error codes (coded
octally; see Table 9=2)

Bit 5 1l = End-0f-File has occurred (attempt at
reading data after an End-0f-Medium)

Bit 6 1 = End~of-Medium has occurred

Bit 7 1 = Done (Data Transfer complete)

Thus, this byte is set up as follows:

7 &

1= 1=

3 4 3 2 | 0
1=
DONE|EOM |EOF

T
SEE CODES

1 i 1 1
.~ ’

NON-FATAL ERRORS|CODED OCTALLY}) —J

Figure 9-2 Status Byte

Non-fatal error codes for the Status Byte are described in Tahle 9-2.

Tahle 9-2
RESMON Non-Fatal Error Codes

Error Code Meaning
1 = block check error A block check error can occur on
any cassette read (hard error;
RESMON cannot read the block).
2 = checksum error A checksum error can occur only on

a formatted binary READ; (see
Section 9.4,3).

{Continued on next page)

Tahle 9-2 (Cont.)
RESMON Non-Fatal Erroxr Codes

Error Code Meaning

]
I

truncation of Truncation of a long line can cccur
a long line on either a formatted binary or
formatted ASCII READ (see Section
9.4.,1). This error occurs when the
- binary block or ASCII 1line is
bigger than the buffer size
specified in the buffer header. In
both cases, RESMON continues
reading characters into the last
byte in the buffer until the end of
the binary block or ASCII line is
encountered,

'S
]

improper mode An improper mode can occur only on
a formatted binary READ, Such
occurrence means that the first
non-null character encountered was
not the proper starting character
for a formatted binary block (see
Section 9.4.3).

When the data transfer to or from the buffer is complete, the Done Bit
(bit 7) is set by RESMON.

The following conditions cause the EOM Bit (bit 6) to be set in the
Buffer Status byte, (An ECM occurrence also sets the Done Bit,)

Line Printer Cassette
No paper +Z detected during
No power formatted ASCII input

Printer drum gate open
Overtemperature condition

An End-0f-Medium condition occurring during use of the line printer is
cleared by a manual operation such as putting paper in the line
printer, RESMON does not retain any record of an EOM.

When an End-0Of-Medium has occurred during a READ from cassette, there
may be data in the buffer. If an EOM has occurred during a WRITE to
the printer, there is nco way of knowing how much of the buffer was
written,

The following conditions cause the EOF Bit (bit 5) and the Done Bit to
he set in the Buffer Status byte:

1. File gap or clear trailer encountered during a READ from
cassette,

2. Clear trailer encountered during a WRITE to cassette,

ir

When an End-0Of-File occurs during a READ, the byte count is set to
reflect the amount of data actually read. When an EOF occurs during a
WRITE, there is no way of determining how much of the buffer was
actually written,

Byte Count

The third word of the buffer header contains the Byte Count determined
as follows:

Type of Transfer Action
Input: During unformatted transfers from the

keyboard, RESMON reads as many data bytes as
the user has specified. During formatted
transfers from cassette or keyboard, RESMON
inserts in this location the number of data
bytes available in the buffer. During
formatted ASCII mode from cassette, if an EOM
or EOF occurs, RESMON will set the Byte Count
equal to the number of bytes actually read.
See Section 9.,3.2 for information concerning
unformatted cassette input.

Output: The Byte Count determines the number of bytes
output for all modes. A line printer
out-of-paper condition will also terminate
output and EOM will be set in the Status
Byte, RESMON does not modify the Byte Count
on output.

9.3.2 Buffer Arrangement for Unformatted Cassette

The distinction between formatted and unformatted cassette I/0 is made
at the time a cassette file is opened for input or output (at SEEK or
ENTER time-~see Sections 9.6,1 and 9.,6.3). The mode specified at that
time governs the way subsequent READs or WRITEs are interpreted for
the opened file. In the special case of unformatted I/0 to or from
cassette, the buffer pointer in the READ or WRITE IOT command is
assumed to point to a 128 byte buffer without a buffer header, and not
to a buffer as previously described, The buffer specifications for
unformatted cassette I/0 made at SEEK or ENTER time are ignored.
During an unformatted READ from cassette, a 128 byte data block is
read directly into the buffer indicated by the second word of the
parameter block. (See Sections 9.7.1 and 9.7.2 for a description of
the parameter block). During an unformatted WRITE to cassette, 128
bytes of data are taken directly from the buffer indicated and
transferred to cassette,

9.4 MODES

Modes have already been mentioned in Section 9.3; following is a
detailed description of each type.

5.4.1 Formatted ASCII

A formatted ASCII READ transfers 7-hit characters (bit 8 is zero)
until a line feed or form feed is encountered. RESMON sets the Byte
Count word in the bhuffer header to indicate the numher of characters
in the buffer. If the 1line is too long, characters are read and
overlaid into the last byte of the buffer wuntil an EOM or an
end-of-1ine (indicated by a 1line feed or form feed) is detected.
Thus, if there is no error, the buffer will always contain a line feed
or form feed.

A formatted ASCII WRITE transfers the number of 7-bit characters
specified by the buffer Byte Count. Bit 8 will always be output as
Zero.

Device=dependent functions for the console terminal keyboard and
printer, line printer, and cassette follow.

Console Terminal Keyboard
Seven-bit characters read from the keyboard are entered in the buffer
and are echoed on the console terminal with the following exceptions:

Null - Ignored. This character is not echoed or
transferred to the buffer.

Tab - Echoes as spaces up to the next tab stop.
(CTRL/TAB "Stops" are 1located at every 8th carriage
keys) position.

RUBOUT - Deletes the previous character on the current

line and echoes the character deleted., If
there are no characters to delete, RUBDUT is

ignored.
CTRL/U ~ Deletes the current line and echoes as +U
followed by a carriage return/line feed.
Carriage - Echoes as a carriage return followed by a
Return line feed. Both characters enter the buffer.

(RETURN key)

CTRL/C - Echoes as +C followed hy a carriage
return/line feed and a "?", The user should
make sure that the System Cassette is mounted
on drive 0; typing any character in response
to the "?" will rehoot the system, (If the
system is intact in memory, no "?" is printed
since no reboot is necessary--the KBL is
merely restarted,)

CTRL/0

Echoes as 10 followed by a CR/LF. Console
terminal output is supressed until either:

l, +0 is typed again, which causes
teleprinter output to be resumed;

"

"

(F

2. The program which is executing
requests keyboard input;

3. The program executes the CTRL/0O
RESET IOT (IOT #0);

4, +C is typed.

5. The program executes the RESET IOT
(IOT #1).

6. The program executes a prompted
SEEK, SEEKF, or ENTER command
(Section 9.6,3), RESMON enables
teleprinter output so the prompt
message will be seen.

If 40 1is +typed during a keyboard input
command, it will be echoed but will not be
passed to the buffer; keyboard input will
continue to be echoed as usual.

CTRL/P ~ Echoes as 1P and causes a jump to the restart
address, if a non-zero restart address was
specified via the RESTART IOT (IOT #2; see
Section 9.5.2).

Lower Case

ASCII - The ASCII codes 141-172 (lower case a-z) are
converted to the codes 101-132 (upper case
A=Z}) on input and are echoed and stored in
the buffer as such,

The echo may be suppressed by setting bit 7 of the buffer header Mode
bByte.

If the buffer overflows, only the characters which fit into the buffer
are echoed, Characters which are deleted by RUBOUT or CTRL/U do not
read into the buffer even though they are echoed, If a carriage
return causes an overflow, or if a carriage return is typed after an
overflow has occurred, a carriage return/line feed will be echoed but
only the line feed will enter the buffer.

In the following formatted ASCII examples, assume there is room for
five characters in the buffer.) indicates typing a carriage return,
| represents typing a line feed, RUBOUT represents typing the RUBOUT

key, and CTRL/U indicates that the CTRL/U comhination has been typed.

User Echoed on ASCII Code

Typed: Console Terminal: Entered into Buffer:
ABC) ABC)| ABC)|
ABCD) ABCD)| ABCD |
ABCDEF) ABCD) | ABCD |
ABCDEF RUB) ABCDD) | ABC)|
ouT
CTRL/Y BB) W) by
ABCDEF RUB RUB 2 ABCDDC) | aB) |
OUT OuUT
ABCDEF RUB RUB RUB X y ABCDDCBX)) | AX) |

OUT OUT OUT

Console Terminal Printer
Characters are printed from the buffer as they appear except that

nulls are ignored and tabs are output as spaces up to the next tab
stop.

Line Printer

Characters are printed from the buffer as they appear except as
follows:

Nulls - Ignored,

Tab - Output as spaces up to the next tab stop.
Carriage - Ignored. It is assumed that a line feed or
Return form feed follows, These characters cause

the line printer "carriage®™ to advance.
All characters beyond the 132nd (or 80th if the optional line printer

is wused) are printed on the next line; RESMON issues a CR/LFP and
continues output.

Cassette Input

Nulls - Ignored,

Rubout - Ignored,

CTRL/Z = Sets Done Bit and EOM Bit (bit €) in Buffer Status
byte.

9-10

Cassette Output

Characters are transferred from the buffer as they appear. When a
formatted ASCII cassette file is closed, the Monitor writes a t2 into
the output block and pads the unused portion of the block with nulls,

9.4,2 Unformatted ASCII

Unformatted ASCII READs and WRITEs transfer the number of 7-bit
characters specified by the header Byte Count. (See Section 9.3.2 for
information on unformatted transfers using cassette.)

Device-dependent functions include only the keyhoard. Characters are
read and echoed except as follows:

Tab - Echoes as spaces up to the next tab stop.
CTRL /P - Same as formatted ASCII,
CTRL/C - Same as formatted AS5CIT,
CTRL/0O - Same as formatted ASCITI,

Lower Case
ASCII - Same as formatted ASCII,.

9.,4.3 Formatted Binary

Formatted binary is used to transfer checksurmed binary data (8-bit
characters) in blocks. A formatted binary block appears as follows:

Byte (octal) Meaning

001 - Start of block (output automatically by
RESMON) .

000 = Always null (output automatically by
RESMON) .

XX - Block Byte Count (low-order followed by

b.9.9.4 high-order). Count includes data and
preceding four bytes {output

automatically by RESMON).

DDD

DDD
. - Data bytes (from user's buffer).
DbD
DDD
CCC - Checksum. Negation of the sum of all

preceding bytes in the block (output
automatically by RESMON).

RESMON creates the block during output from the buffer and buffer
header, The Byte Count word in the buffer header specifies the number
of data bytes which are to be output. Note that the number of bytes
output is four larger than the header Byte Count. As the block is
output, RESMON calculates the checksum which is output following the
last data byte.

Oon formatted binary READs, RESMON ignores null characters until the
first non-null character is read, If this character is a 001, a
formatted binary block is assumed to follow and is read from the
device vunder control of the Byte Count value. If the first non-null
character is not 001, the READ is immediately terminated and error
code 4 (see Table 9-2) is set in the Status Byte. As the block is
read a checksum is calculated and compared to the checksum following
the block. If the checksum is incorrect, error code 2 is set in the
Status Byte of the buffer header, If the binary block is too large
(i.e., |[Byte Count-4] larger than the buffer size specified in the
header), the last byte of the buffer is overlaid until the last data
byte has been read; error code 3 is set in the Status Byte.

Device dependent functions do not apply to formatted binary READs and
WRITEs. Eight-bit data characters are transferred to and from the
device and buffer exactly as they appear.

9.4.4 Unformatted Binary

This mode transfers 8-bit characters with no formatting or character
conversions of any kind. For both input and output, the buffer header
Byte Count determines the number of characters transferred. (5ee
Section 9.3.2 for information on unformatted transfers using
cassette,)

Device dependent functions do not apply.

9.5 NON-DATA TRANSFER COMMANDS

The following commands are needed for initialization before any I/0O
transfers can take place,

9.5.1 RESET

The RESET command must be the first RESMON command issued by a user
program and takes the form:

10T
.BYTE 1,0
.WORD 0

It initializes many of RESMON's internal flags, resets all devices to
their state at power-up (a hardware RESET instruction is issued)
enables keyboard interrupts, clears the t0 flag, and clears the *tP
RESTART address {set by the RESTART IQT})., This IOT is normally issued
only at the start of a user's program, It takes a significant amount
of time to complete since RESMON goes into a timing loop and then
issues a hardware RESET instruction. If this were not done, the last
characters printed on the console terminal could be garbled.

The RESTART command designates an address at which to restart a
program. The format of the command is:

I0T
.BYTE 2,0
.WORD (address to restart)

After this command has been issued, typing CTRL/P on the keyboard will
transfer program control to the restart address. If the restart
address is designated as 0, the CTRL/P restart capability is disabled.

The RESTART command cancels keyboard interrupts. It is the program's
responsibility to clean up any I/O in progress and to ensure that the
Stack Pointer is reset,

It is a good programming practice for the code at the restart .address
to check if any cassette output files were open when +P was typed and
to close them before actually restarting normal program execution, It
is also advisable to issue a RESET IOT after a tP restart and hefore
any RESMON data transfer commands are issued,

9.5.3 CNTRLO

The CNTRLO command resets the RESMON to flag, thus enabling future
console terminal output. The format is:

10T
.BYTE 0,0
.WORD 0

The 10 flag (which suppresses console terminal output) is set by the
user typing +0 on the keyboard. The flaqg is cleared {(thus enabling
teleprinter output to continue) when one of the follewing occurs:

1. *0 is typed again.

2. The program running in memory requests keyboard input.
3. *C is typed.

4, The program running issues CNTRLC IOT.

5. The program running issues RESET IOT.

6. The program running issues a prompted SEEK, SEFKF, or
ENTER IOT (see Section 9,6.3, User Prompting}.

9.6 CASSETTE FILE I/0 COMMANDS

The following RESMON commands are used for setting up I/0 transfers.

9,6.1 SEEK

The SEEK command is for cassette only and is used to open a cassette
file for input. SEEK sets up information which RESMON uses in
subsequent READ's from the specified unit. The format of the SEEK
command is:

IOT
.BYTE 10, {device #--device 0 or 1 only)
.WORD (pointer to list of arguments for SEEK)

The list of arguments for the SEEK command appears as:
.BYTE Status/Error, (Mode)

«WORD (address of 128 byte buffer for use when reading
cassette blocks if formatted mode is specified;
otherwise 0)

+WORD (address of a second 128 byte buffer if double
buffered input is desired; otherwise 0)

+WORD {address of 32 byte buffer for storage of
file headers while SEEKing)

.WORD ([address of filename to SEEK)
.WORD {address to return to if error detected)

The 32 byte buffer for file headers is the area into which RESMON will
read file headers as it is looking for the specified file., This
buffer is a scratch area and will generally be the same for every SEEK
command the wuser has in his program, The address of the filename to
SEEK is a pointer to an area containing the filename and extension
properly padded to nine bytes (if necessary), which is to be loocked
for on the specified cassette unit, For formatted I/0, the address of
the 128 byte buffer tells RESMON where to read cassette data blocks
once the specified file has been found, RESMON reads blocks into this

9-14

buffer from cassette and then takes data from this buffer and moves it
to the user's line buffer to fulfill a READ IOT. If the user
specifies a second 128 byte buffer, RESMON will use it to implement a
double buffered input scheme for subsequent READ's on that device.
For unformatted I/0, the buffer specifications are ignored.

RESMON sets the Status/Error Byte in the list of SEEK arguments to
reflect errors, as follows:

Bit set Error
7 Error detected
6 File not found
5 Hard error
4 Conflict (e.g. output file was open)
3 No I/0 buffer specified for formatted 1/0

On detection of an error, RESMON sets bhit 7 and one other bit in the
error byte and transfers control to the error address specified in the
list of arguments.

If no error was detected, SEEK returns with the header of the desired
file in the nuser=-specified scratch area and with the cassette
positioned to READ the first data block of the file, No data blocks
are read as a result of a SFEK. The SEEK command always rewinds the
gpecified cassette before doing a SEEK (segquential search).

NOTE

If the first byte of an extension specified by the
user in a SEEK or SEEKF command is 000, RESMON
will not attempt to match the extension, but
rather will look for the first file which has the
same filename,

If the first byte of a filename specified by the
user in a SEEK or SEEKF command is 000, RESMON
will not compare filenames at all, but rather will
position the cassette so as to read the first file
encountered, For SEEK, this is always the first
file on the cassette, since the tape is always
rewound first, For SEEKF, this is the first file
encountered spacing forward from the current
position,

9.6.2 SEEKF

The SEEKF (SEEK Forward) command is identical in format and operation
to the SEEK command, except SEEKF does not perform a rewind before
searching for the specified file. The format of the command is:

10T
+BYTE 11, {(device #)
+WORD (pointer to list of arquments for SEEKF)

The list of arguments is the same as for SEEK and can be found in
Section 9.6,1.

9.6.3 ENTER

The ENTER command is for cassette only, and is used to create a new
file on cassette (at the logical end of cassette}). The format of the
command is:

IoT
.BYTE 7, (device #)
.WORD (pointer to list of ENTER arguments}

The list of argquments for the ENTER command is similar to the list of
arguments for the SEEK commands:

+BYTE Status/Error, {(Mode)

.WORD (address of 128 byte buffer for use in writing
cassette blocks in formatted mode; otherwise Q)

WORD (address of second 128 byte buffer if double
buffered output is desired; otherwise Q)

.WORD (address of 32 byte buffer for storage of
file headers)

+WORD (address of filename to be ENTERed)
WORD (address to return to if error detected)

.WORD (address of overflow subroutine to be called if a
formatted file hits end-of-tape before it is
closed; otherwise Q)

The ENTER command rewinds the specified cassette unit and does a SEEK
for the filename supplied by the |user. {ENTER assumes that the
filename address supplied by the user is the beginning of a 32 byte
header to be written out as the header block of the file being
ENTERed. &See Appendix F for a complete description of the cassette
file header.) If the file is found, it is deleted by overwriting the
existing header with an "*EMPTY" header. The ENTER command then moves
down to the logical end of cassette and replaces the end of cassette
marker with the header specified by the user., The cassette is left
positioned to write the first data block of the new file, Before
writing the new header, RESMON performs several operations: the
sequence and continuation bytes of the user~specified header are set
to zero; the length is set to 128 bytes per data record; if the first
two bhytes of the date are zero (or spaces--ASCII 240), RESMON will
supply the current date {(if the user specified a date with the Monitor
DATE command) .

For formatted I/0, the 128 byte buffer in the list of ENTER arguments
is an intermediate buffer which RESMON uses in writing data blocks of
the ENTERed file. The user normally issues a WRITE IOT specifying a
line buffer; RESMON takes data from the line buffer and moves it to
the user-specified 128 byte buffer; when this 128 byte buffer is full,
it is written out to cassette. If the user supplies the address of a
second 128 byte buffer, RESMON will double buffer cassette output for
this file, Buffer information from the ENTER is stored by RESMON for
reference during I/0 to the specified unit. For unformatted I/0 the
buffer specifications are ignored.,

9-16

it

L 1]

The Mode Bvte in the list of arguments is similar to the Mode Byte in
the SEEK command=--it indicates how the user intends to write the file
being ENTERed and is stored by RESMON for reference during I/0. It
can have only the wvalues listed in Section 9.3.1 under "Mode Byte".
The Status/Error Byte in the list of ENTER arguments is set by RESMON
to reflect errors detected during the ENTER function; following is a
list of the error bits:

Bit Set Error
7 Error detected
6 Full tape (clear leader found)
5 Hard error
4 Conflict (output file was
open)
3 No I/0 buffer specified for

formatted I/0

If an error is detected, RESMON sets bit 7 and one other bit and
transfers control to the error address specified in the list of
arguments,

The last item in the list of ENTER arquments is an overflow subroutine
tc be called in case the user ENTERs a formatted file and the WRITE
processor encounters the end of cassette before the file is CLOSEd.
If an overflow subroutine was specified when the file was ENTERed, the
WRITE processor will call it wvia a JSR PC,S5UBR. The user's subroutine
should tell the wuser to mount a new cassette on the same drive that
the file which overflowed was mounted on. It should then ENTER a file
on that new cassette (using the same internal buffers as the original
ENTER command) and then return to RESMON's WRITE processor via an
RTS PC, The WRITE processor will continue writing onto the new file:
the two files should then be combined with PIP before being used
further, RESMON saves registers 0-~5 before calling the wuser
subroutine, so the user need not worry about destroying the contents
of these registers, However, the user should be careful not to
destroy the stack pointer (Register 6).

User Prompting

The commands SEEK, SEEKF, and ENTER have an additional feature which
can aid the user who has his files on many different cassettes, If,
on entry to these commands, the Status/Error byte in the 1list of
arguments is equal to 377 (octal} RESMON will prompt the user to mount
a new cassette on the unit specified for the command. RESMON will

type:
#?

where "#* is the unit number on which RESMON expects a new cassette to
be mounted, RESMON then waits for the user to type any character on
the keyboard. When the user has done this, RESMON assumes that the
proper cassette has been mounted and initiates the command.

Chapter 3 provides more details concerning user prompting.

Non-Fatal Off-Line and Write-Lock BErrors

SEEK, SEEKF, and ENTER have +the ability to detect write~lock and
off-1line (no cassette mounted) errors and allow the user to correct
them without aborting the command in progress. When one of these
commands is initiated, if there is no cassette mounted on the
specified unit, the message:

70FFLINE n

will be generated. The user should mount on unit n the cassette
containing the file he wishes to SEEK or the cassette on which he
wishes a new file ENTERed. RESMON will automatically proceed with the
specified command. No action other than mounting the cassette is
necessary.

lLikewise, when an ENTER command is initiated, if the cassette mounted
on the specified unit 1is write-locked, RESMON will generate the
message:

?WRT LOCK n

The user should dismount the cassette, write-enable it, and remount
it. RESMON will continue with the specified ENTER command
automatically.

NOTE

When the user dismounts the cassette, he
will also see the "20FFLINE n" message
described above.

9.6.4 CLOSE

The CLOSE command is for cassette only and specifies that a certain
file presently open for output is to be closed and not referenced
further.

NOTE

CLOSE may be issued for any device, but
it is ignored for the console terminal
keyboard and printer, and line printer,
It is also ignored if no output file is
open on the specified unit.

The format of the command is:
I0T
+BYTE 6, (device #)
«WORD (address for transfer if error detected)
CLCSE frees the unit so that it may be opened again via a SEEK, SEEKF,

or ENTER. If CLOSE is issued for a unit which is open for input, no
error will occur but control will return immediately to the user.

9-18

e

In the case of unformatted ASCII and binary files, CLOSE waits until
the 1last WRITE initiated is completed, then writes an end-of-tape
marker and rewinds the cassette, If the user initiates an unformatted
WRITE and then immediately does a CLOSE, the CLOSE processor has to
walt until the WRITE is completed before it can start to write an
end-of-tape marker. The error return is never taken for unformatted
CLOSEs.

If a formatted output file is open, CLOSE must write out the last
portion of RESMON's internal buffer (if there is any data in it),
write an end-of-file on the cassette, and rewind the cassette.
Control is returned to the user once the rewind has been initiated.

In the case of a formatted ASCII file open for output, CLOSE will
supply a 12 (ASCII 32) as logical end-of-file, pad the rest of the
last data block with nulls, write out the last data block, write the
end=of=tape marker, and rewind the cassette.

In the case of formatted binary files, CLOSE writes out the last data
block with any unused portion of it padded with nulls, writes the
end-of=tape marker, and rewinds the cassette,

The only possible error which may occur during a formatted CLOSE is
clear leader or full tape; this error is detected when RESMON writes
out the last portion of the internal buffer. If this WRITE is not
successful, the error return is taken. If clear leader is detected
when writing the end-of-tape marker, it is ignored.

9.7 DATA TRANSFER COMMANDS

The following IOT's are used to transfer data between devices.

9.7.1 READ

The READ command causes RESMON to read from the device associated with
the specified device number according to the information found in the
buffer header, The format of the command is:

I0T
«BYTE 5, (device #)
.WORD {address of first word of the buffer header)
or
.WORD (address of parameter block)--for unformatted
cassette READs

For unformatted cassette READs, the parameter block has the following
form:

.BY¥TE Status/Error,0
.WORD {(address of 128 byvte buffer for READs)

RESMON initiates the transfer of data, clears the Status Byte, and
returns control to the calling program. If the device on the selected
channel is busy, or if a conflicting device (see Section 9,7.3) is
busy, RESMON retains control until the data transfer can be initiated.

9-19

Upon completion of the READ, the appropriate bits in the Status Byte
are set by RESMON and the Byte Count word indicates the number of
bytes in the data buffer.

For formatted cassette READs the flow of execution is as follows:

RESMON reads a data block into an intermediate cassette buffer
{specified by the user at SEEK time). From that buffer, RESMON pulls
characters one at a time and uses them to fill the buffer specified by
the user in the READ command. The user buffer is filled exactly as if
the characters were coming directly from the cassette and the process
is governed as described in Section 9.3.1. 1If, at SEEK time, the user
specified a second intermediate buffer, the cassette I/0 1is double
buffered, thus minimizing the amount of time the user program must
wait for physical 1/0 transfers. Note that the user can implement his
own double buffering scheme by using unformatted cassette I/0, since
in that case the location of cassette buffers is not fixed at SEEK or
ENTER time, but can be wvaried with every READ {or WRITE) command
simply by changing the buffer pointer in the command (see Section
9-3-2)-

For formatted cassette READs, RESMON will set the Status Byte in the
buffer header to reflect the status of the data transfer as described
in section %.3.1, Status Byte. For unformatted cassette READs the
Status Byte in the parameter block is set to reflect the status of the
operation as described in the section on Cassette I/0 Primitives
{(Section 9.8). For formatted cassette READs, the Done Bit will be set
when the user's buffer has been filled, even though there may be some
physical I/0 still in progress., With regard to formatted cassette
1/0, as a result of the intermediate buffering scheme the user's
buffer will always be full when he regains control following a READ
command since the data is coming from a memory buffer. If the user
tries to do a READ from cassette before doing a SEEK or SEEKF, the
Monitor will give a "NO FILE OPEN n" message, where n is either 0 or 1
(for drive 0 or 1).

9.7.2 WRITE

RESMON writes on the device associated with the specified device
number according to the information found in the buffer header. The
format of the command is:

10T
.BYTE 4, (device #)
LWORD (address of first word of the buffer header)
or
.WORD (address of parameter block)=--for unformatted
cassette WRITEs

For unformatted cassette WRITEs, the parameter block has the form:

.BYTE Status/Error,0
-WORD (address of 128-bvte buffer to WRITE)

Transfer of data occurs in the amount specified by the Byte Count
(Buffer+4}. RESMON returns control to the calling program as soon as
the transfer has been initiated. If the selected device is busy or a

conflicting device is busy, RESMON retains control until the transfer
can be initiated., Upon completion of the WRITE, RESMON will set the
Status Pyte to the latest conditions. If a WRITE causes an EOM
condition, the user has no way of determining how much of his buffer
has been written (the Byte Count remains the same).

The WRITE command behaves the same way as the READ command with regard
to formatted and unformatted cassette I/0., When control is returned
to the user after a formatted cassette WRITE, his 1line buffer is
available, The status bytes for formatted and unformatted cassette
WRITEs are interpreted like those for cassette READs,

If a WRITE is issued without first doing an ENTER (see Section 9.6.3)
the Monitor will respond by typing a "NO FILE OPEN n" message, where n
is the drive number.

9,7.3 Device Conflicts in Data Transfer Commands

Because there is a physical association between the printer and
keyboard on the console terminal, certain devices cannot be in use at
the same time. When a data transfer command is given, RESMON
simultaneously checks for two conditions before executing the command:

1. 1Is the device requested already in use?

2. Is there some other device in use that would result in
an operational conflict?

RESMON resolves both conflict situations by waiting until the first
device is no longer busy before allowing the requested device to start
functioning, (This is an automatic WAITR command; see the next
section.) For example, if the console terminal is in use, and either a
KBD request or a second request for the terminal itself is made,
RESMON will wait until the current output operation has been completed
before returning control to the calling program.

Table 9-3 lists the devices; corresponding to each device on the left
is a list of devices (or the echo operation) which would conflict with
it in operation.

Table 9-3
Device Conflicts

All Possible Conflicting

Device Devices or Operations
Terminal Keyboard {KBD) Echo, KBD, TTY
Printer (TTY)

Cassette (CTQ or CT1) CT0, CTl
Line Printer {LP) LP

9-21

9.7.4 WAITR (Wait, Return)

The WAITR cormand is used to test the status of the specified device,.
The format of the command is:

I0T
BYTE 3, (device #)
+WORD (busy return address}

If the device {or any possible conflicting device) is not transferring
data, control is returned to the instruction following the WAITR
command, Otherwise, control is transferred to the busy return
address.,

Note that a not busy return from WAITR normally means the device is
available, However, in the case of a WRITE to the console terminal or
line printer, this means only that the last character has been output
to the device. The device is still in the process of printing the
character. Thus, care must be exercised when performing a hardware
RESET or HALT after a WRITE-WAITR sequence, since these may prevent
the last character from being physically output.

WAITR vs, Testing the Buffer Done Bit

WAITR tests the status not only of the device it specifies, but also
of all possible conflicting devices. This means that when WAITR
indicates that the device is not busy, the data transfer on the device
of interest may have been completed for some time. Depending on the
program and what devices are being used for a given run, the WAITR
could have been waiting an additional amount of time for a conflicting
device to become free {i.e., waiting for the KBD when the TTY is to be
used, or waiting for CTO0 when CTl is to be used). Where this
possibility exists and buffer availahility is the main concern,
testing the Done Bit of the Status Byte (set when the buffer transfer
is complete) would be preferable to WAITR; alternately, WAITR would be
preferable if device availability is the main interest.

In unformatted transfers to and from cassette, WAITR is equivalent to
checking the Done Bit for the last READ or WRITE command,

In formatted transfers to and from cassette, a WAITR is equivalent to
checking whether there is any physical I/0 occurring on the specified
unit. The user is not generally concerned with this-~-normally he only
wants to know when his line buffer is free if he is doing formatted
I/0. MNote that in this case even though no physical I/0 is going on
when the not busy return 1is taken, there may still be data in the
user's intermediate cassette buffer (as specified in the SEEK or ENTER
command) . WAITR would generally not be used when the programmer is
writing/reading a cassette file in formatted mode.

9.7.5 Single Buffer Transfer on One Device

The program segment below includes a WAITR which goes to a busy return
address that is its own IQT, continuously testing device 3 for
availability; in this case, only a single device and a single buffer

-

——

are involved, A done condition in the buffer 1 Status Byte can be
inferred from the availabilty of device 3. This knowledge ensures
that all data requested for Buffer 1 is available for processing.

At 10T s TRAP TO RESMON
- + BYTE READ., 3 3 SPECLFY BUFFER AND
« WORD BUF1 3 READ FROM DEVICE 3
3INTO BUFFER
BUSY$ 10T 3 TRAP TO RESMON
. «BYTE WAITR,3 3WAIT FOR DEVICE 3
« WORD BUSY 3 SPECIFY BUSY RETURN
. 3 ADDRESS TO FINISH
B P READING
{Process Buffer 1)
P .
JMP A

Testing the Done Bit of Buffer 1 might have been used instead, but was
not necessary with only one device operating.

9,7.6 Double Buffering

The example below illustrates a time-saving double buffer scheme
whereby data is processed in Buffer 1 at the same time that new data

- is being read into Buffer 2; sequentially, data is processed in Buffer
2 at the same time that new data is being read into Buffer 1,
10T 3 TRAP TO RESMON
+BYTE READ,3 3 SPECIFY BUFFER 1
« WORD BUF1 3 READ FROM DEVICE
33 INTO BUFFER 1
Al I0T 3 TRAP TO RESMON
« BYTE READ,3 3 SPECIFY BUFFER 2
« WORD BUF2 3 READ FROM DEVICE
— . 33 INTO BUFFER 2
{process BUFl concurrently with READ into BUF2)
B1 10T 3 TRAP TO RESMON
«BYTE READ,3 3 SPECIFY BUFFER 1
« WORD BUF) 3 READ FROM DEVICE
. 33 INTO BUFFER 1
(process BUF2 concurrently with READ into BUF1)
JMP A
3
Because RESMON ensures that the requested device is free before
initiating the command, the subsequent return of control from the IOT
at A implies that the RFAD prior to A 1is complete; that is, that
- Buffer 1 is available for processing, Similarly, the return of

control from the IOT at B implies that Buffer 2 is available. WAITR's
are not required because RESMON has automatically ensured the device's
availability before initiating each READ.

9.8 CASSETTE 1/0 PRIMITIVES

RESMON also allows the sophisticated user to access the basic routines

necessary for doing cassette I1/0.

the following format:

I0T

.BYTE function, (device #)
.WORD (pointer to argument list}

These IOT's can access only cassette, i.e., device numbers
The functions listed in Table 9-4 are valid.

Table 9-4
Cassette I/0 Functions

Function #

Meaning

12
13
14

WRITE file gap
WRITE (see below)
READ (see below)
Space reverse file
Space reverse block
Space forward file
Space forward block
Rewind

For READ and WRITE, the list of arguments is as follows:

.BYTE Status/Error,0
WORD (buffer address)
.WORD (byte count)

This is done by means of IO0OT's with

0 and 1.

For functions other than READ and WRITE the list of arguments is only:

.BYTE Status/Error,0

Errors are reported in the Status/Error byte as follows:

Bit set

Ok 2w U~

Meaning

Error Detected

Block Checksum (on READ)
Clear Leader

{not used)

File Gap Detected

{not used)

{not used)

Done

[

T

RESMON sets bit 7 and one (or more}) other bits if an error is
detected., Write-lock, off-line, and timing errors cause a fatal error
message and return to RESMON,

RESMON stores the high order byte of the cassette status and command
register in the user's status error byte when an error is detected.
The user should check error bits in the following order:

l. Clear Leader
2, File Gap
3. Block Checksum

Baecause of the nature of the cassette hardware, more than one of these
bits may be set, The above order should be used when checking the
bits; only the first bit detected is significant.

Bit 0 of the Status/Error byte is set to 1 when the function is
complete; control is returned to the user as soon as the function is
initiated. If physical cassette I/0 is in progress when one of these
functions is called, RESMON will wait wuntil the I/0 is complete,
initiate the desired function, and then return to the user.

9.9 ERROR MESSAGES
The following error messages are detected in RESMON (refer to Section
3.7 of Chapter 3):

Table 9-5
RESMON Error Messages

Message Arg Meaning

IoT PC An IOT was issued at the indicated
location which referenced either an
illegal RESMON command, illegal
device, or illegal data mode.

NO FILE OPEN drive # User issued a cassette READ or
WRITE without doing a SEEXK or
ENTER.

OFFLINE drive # User attempted to access a cassette
which was not mounted; execution is
automatically resumed when the
cassette is mounted,

TIMING drive # A timing error occurred on the
drive indicated (RESMON tries the
operation 3 times.)

{(Continued on next page)

Ta.ble 9"5 (Cont-)
RESMON Error Messages

Message Arqg Meaning

TRAP PC A stack overflow, attenpt to
reference a word on a byte
houndarv, or illegal memory
reference trap occurred at the
lnocation indicated. The stack
pointer (R6) at time of error is
saved in location 44.

WRT LOCK drive # User attempted to WRITE on a
write-locked cassette; execution is
auntomatically resumed when the
cassette is write—enabled.

9.10 EXAMPLE OF PROGRAM USING RESMON

An example of the use of RESMON by bhoth the CAPS~11

within a user program is presented in Appendix D.

System and from

i

APPENDIX A

ASCII CHARACTER CODES

A.l KEYBOARD DIFFF.RENCES

Certain conscle terminals vary concerning labeling of keyboard keys
and characters output upon receipt of particular ASCII character
codes., The following list should be referenced to determine possible
differences:

Keys Which Perform Represent
the Same Function the ASCII Code
1 136

+ 137

RUBOUT DELETE 177

ESCAPE ALTMODE 176 175
SHIFT I \ 134

CTRL I TAB 211

SHIFT K [133

SHIFT M 1 135

A.,2 CHARACTER CODES

The following is a list of the 7-bit octal ASCII character codes.
(ASCII is an abbreviation for American Standard Code for Information
Interchange.)

7-Bit 7-Bit 7-Bit 7=-Bit

Octal Character Octal Character Octal Character Octal Character
000 NUL 040 sp 160 @ 140 space
001 SOH 041 ! 101 A 141 a
002 STX 042 " 162 B 142 b
003 ETX(+C) | 043 # 103 c 143 c
004 EOT 044 S 104 D 144 d
005 ENQ 045 % 165 E 145 e
006 ACK 046 & 166 F l46 f
007 BEL 047 ' 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 3
013 VT 053 + 113 K 153 k
014 FF 054 ' 114 L 154 1
015 CR 055 - 115 M 155 m
0lé s0 056 « 116 N 156 n
017 SI(10) 057 / 117 0 157 o
020 DLE(tP) | 060 0 ‘120 P 160 r
021 ncl 06l 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 i 165 u
026 SYN 066 6 126 v 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 Y
032 suB(tz) | 072 : 132 Z 172 z
0233 ESC 073 : 123 { 173 [
034 Fs 074 < 134 AN 174)
035 Gs 075 = 135] 175 (1)
036 RS 076 > 136 t{~} 176 {~)
037 us 077 ? 137 (=) 177 DEL

TERMINATORS
Character
CTRL/FORM
LINE FEED
RETURN

=

%

TAB

BLANK or
SPACE

APPENDIX B

ASSEMBLY LANGUAGE SUMMARY

Function
Source line terminator
Source line terminator
Source line terminator
Label terminator
Direct assignment delineator
Register term delineator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression field indicator
Deferred addressing indicator
Initial register field indicator
Terminal register field indicator
Operand field separator

Comments field delimiter

Arithmetic addition operator

Arithmetic subtraction operator

Character Function

& Logical AND operator

1 Logical OR operator

» Double ASCII text indicator

' Single ASCII text indicator

BE.2 ADDRESS MODE SYNTAX

In the following syntax table, n represents an integer between 0 and
73 R is a register expression; E represents any expression; ER
represents either a register expression or an absolute expression in
the range of 0 to 7.

Address Symbol in
Mode Address Operand
Number Mode Name Field Meaning
0n Register R Register R contains the operand.

R is a register expression.

1n Deferred Register @R or (R) Register R contains the operand
address,

2n Autoincrement (ER) + The contents of the register
specified by ER are incremented
after being used as the address
of the operand,

beferred
an Autoincrement @ (ER) + ER contains a pointer to the
address of the operand. ER is
incremented after use.
4n Autodecrement = {ER) The contents of register ER are
decremented hefore being used as
the address of the operand.
Deferred
5n Autodecrement @~ (ER) The contents of register ER are

decremented before being used as
a pointer to the address of the

operand,
Index by the
Register
én Specified E(ER) The value obtained when E is

combined with the contents of
the register specified {ER) 1is
the address of the operand,

T

Address Symbol in
Mode Address Operand
Number Mode Name Field Meaning

Deferred index
by the Register
7n Specified 2E(ER) E added to ER producss a pointer
to the address of the operand.

27 Immediate Operand &E E is the operand.
37 Absolute address a§E E is the operand address.
67 Relative address E E is the address of the operand,
77 Deferred relative
address ek E is a pointer to the address of

the operand.

B.3 INSTRUCTIONS

The tables of instructions which follow are grouped according to the
operands they take and according to the bit patterns of their
op=codes.

In the representation of op-codes, the following symbols are used:

ss Source operand Specified by a 6=-bit
address mode

DD Destination Specified by a 6-bit
operand address mode

XX 8-bit offset to a Branch instructions
location

R Integer hetween 0O Represents a general
and 7 register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address
() Contents of

-+ Becomes

The condition codes in the processor status word (PS) are affected by
the instructions; these condition codes are represented as follows:

N Negative bit: Set if the result is negative
z Zero bit: Set if the result is zero
v Overflow bit: Set if the result had an
. overflow
Cc Carry bit: Set if the result had a carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

To set

* Conditionally set

- Not affected
0 Cleared
1 Set

conditionally means to wuse the instruction's result
determine the state of the code.

Logical operators are represented by the following symbols:

Inclusive QR

() Exclusive OR

& AND

_— Used over a symbol to represent

the 1's complement of the symbol
B.3.1 Double Operand Instructions {OP A,A)
Condition Codes
Op-code Mnemonic Stands for Operation N 2 v C
01SsSDD MoV MOVe (SE)+(DE) * * 0 -
11SsDD MovB MOVe Byte
02SsDD CMP CoMPare (SE)-(DE) * ok x &
125sDD CMPB CoMPare Byte
035sDD BIT BIt Test (SE) & (DE) * % 0 -
13S5SDD BITB BIt Test Byte
04SSDD BIC BIt Clear (SE) & (DE)*(DE) * * 0 =
14SSDD BICB BIt Clear Byte
0555DD BIS BIt Set (SE) ! (DE}*(DE) * * 0 =
I58SDD BISB BIt Set Byte
06SSDD ADD ADD (SE) + (DE)=(DE) * * & =&
168SDD SUB SUBtract (DE) - (SE)+(DE) % * & %
B.3.2 Single Operand Instructions (OP A)
Condition Codes

Op=-code Mnemonic Stands for Operation N 2 VvV C
0050DD CLR CLeaR 0+ (DE} 0O 1 ¢ o
1050DD CLRB CLeaR Byte
0051DD coM COMp lement (DE) + (DE) * x 0 1
1051DD COMB COMplement Byte

to

Condition Codes

Op-code Mnemonic Stands for Operation N 2 V C
0052DD INC INCrement {DE) + 1~ (DE) * * x]
1052DpD INCB INCrement Byte
0053DD DEC DECrement {({DE) - 1+ (DE} L
106 3DD DECB DECrement Byte
0054DD NEG NEGate (DF) + 1-+(DE) LI S S
1054DD NEGB NEGate Byte
0055DD ADC ADd Carry (DE) + (C)—+(DE) * * Kk
1055DD ADCB ADd Carry Byte
0056DD SBC SuBtract Carry (DE) - (C)+(DE) * * % =
1056DD SBCB SuBtract Carry
Byte
0057DD TST TeST (DE) -~ 0+ (DE) * * 0 0
1057DD TSTB TeST Byte
B.3.3 Rotate/Shift
0060DD ROR ROtate Right Hte— o . J * * « &
l061DD RORB ROtate Right Lo JL . .. 7 & * & &
Byte O
0061DD ROL ROtate Left Gf—— " o J % & & &
1061DD ROLB ROtate Left %?_;1__9 FAAIi:TI * ok ok w
Byte |
0062DD ASR Arithmetic —————— - % % * *
shift Right O “
1062DD ASRB Arithmetic * *x & x
Shift Right Lol g1
Byte
0063DD ASL Arithmetic 3% ¥ * *
Shift Left i ?
1063DD ASLB Arithmetic LA
Shift Left e td D -
Byte
0001DDb JMP JuMP DE -+ (PC} - - = -
0003DD SWAB SWap Bytes S wr——— * * 0 0

= 4

The following 3 instructions are available on the PDP-11/40, 45

0065Ss

0066DD

0067DD

MFPI

MTPI

SKT

Move From
Previous
Instruction
space

Move To
Previous
Instruction
space

Sign eXTend

(SE) + (TEMP)
(SP) -2+(SP)
{(TEMP)+((SP))

((SP))+ {TEMP)
(SP+2+(SP)
{TEMP)~+ (DE)

0 DE if N
bit is clear
=1 DE if N
bit is set

only:

Condition Codes

N

Z_V C

B.3.4 Operation Instructions {OP)
Op-Code Mnemonic Stands for Operation
000000 HALT HALT The computer stops
all functions.
000001 WAIT WAIT The computer stops
and waits for an
interrupt.
000002 RTI ReTurn from The PC and ST are
Interrupt popped off the SP
stack:
({SP))~{PC)
(SP)+2+(8SP)
((sP))~+(8ST}
(SP)+2~+ (5P}
000003 000003 Breakpoint Trap to location
Trap 14, This is used
to call oODT.
000004 I0T Input/Output Trap to location
Trap 20, This is used
to call RESMON.
000005 RESET RESET Returns all I/0

device handlers to
power-on state,

The following instruction is available on the PDP-11/40, 45 only:

000006

RIT

ReTurn from
Interrupt

Same as RTI
instruction but
inhibits trace
trap.

*

*

¥

Trapping OP or OP E where 0{=E<=337 (octal)

104000~ EMT EMulator Trap to location *

104377 Trap 30. This is used
to call system
programs.

104400~ TRAP TRAP Trap to location *

104777 34, This is used
to call any routine
desired by the pro-
grammer,

CONDITION CODE OPERATES

Op-code Mnemonic Stands for

000241 CLC CLear CArry Bit in PS.

000261 SEC SEt Carry bit.

000252 CLV CLear oVerflow bit.

000262 SEV SEt oVerflow bit,

000244 CLZ CLear Zero bit,

000264 SEZ SEt Zero bit,

000250 CLN CLear Negative bit,

000270 SEN SEt Negative bit.

000254 CNZ CLear Negative and Zero bits.

000257 cCcc CLear all Condition Codes.

000277 sCcC Set all Condition Codes,

000240 NOP No-operation.

B.3.5 Branch Instructions OPR E
where =128 (decimal) ¢{(E-.-2)/2«127 (decimal)

Op-Code Mnemonic
0004xx ER
0010Xxx BNE
0014xx BEQ

Stands for
BRanch always
Branch if Not Egqual (to zero)

Branch if EQual (to zero)

Condition to be
met if branch is
to occur

Condition to be
met if branch is

Op-Code Mnemonic Stands for to occur

0020xx BGE Branch if Greater than or N@ V=0
Equal (to zero)

0024XX BLT Branch if Less Than (zero) NODve=1l

0030XX BGT Branch if Greater Than zI (N V) =0
(zero)

0034xX BLE Branch if Less than or Zl (N@ v)=1
Equal (to zero)

1000xX BPL Branch if Plus N=0

1004 XX BMI Branch if MInus N=1

1010XX BHI Branch if HIgher c@ z=0

1014xx BLOS Branch if LOwer or Same Clz=1

lo20xx BVC Branch if oVerflow Clear V=0

1024XX BVS Branch if oVerflow Set =1

1030xXx BCC (or Branch if Carry Clear

BHIS) {(or Branch if HIgh or Same) C=0
1034XX BCS (or Branch if Carry Set (or
BLO) Branch if LOw)} Cc=1

B.3.6 Subroutine Call (JSR ER,A)

Op—-code Mnemonic Stands for Cperation

004RDD JSR Jump to Sub- Push register on the SP stack,

routine

put the PC in the register:

DE~+ (TEMP)

A temporary
storage register
internal to the
processor

{SP)~-2+(SP)
{REG) > {(SP))
(PC)+m>(REG) M depends upon
the address mode

(TEMP) » (PC)

B.3.7 Subroutine Return

Op~code

Mnemonic

Stands for

00020R

RTS

ReTurn from

Subroutine

B.4 ASSEMBLER DIRECTIVES

Mnemcnic Operand Stands for
.EQT none End Of Tape
« EVEN none EVEN
+« END E END

(E op-

tional)
« WORD E, E,... WORD

E, E,... (the void

operator)
«BYTE E,E;.c. BYTE
«ASCII /XXX...X/ ASCII
.TITLE NAME TITLE
<ASECT none ASECT
+CSECT none CSECT
«LIMIT none LIMIT
« GLOBL NAME ,NAME, ...
GLOBaL

+« RADS0 Vg.*$.94 RADix 50
+LIST none LIST
+NLIST none No LIST

Qperation

Put register contents in PC
and pop old contents from SP
stack into register.

Ogeration

Indicates the physical end of
the source input medium,

Ensures that the assembly
location counter is even by
adding 1 if it is odd.

Indicates the physical and
logical end of the program and
optiocnally specifies the entry
point (E).

Generates words of data.

Generates bytes of data.

Generates 7-bit ASCII char-
acters for text enclosed by
delimiters.

Generates a name for the
cbject module,

Initiates the Absolute
section.
Initiates the Relocatable

Control section.

Generates two words containing
the low and high limits of the
relocatable section.,

Specifjes each name to be a
glcbal symbol.

Generates the RADIX 56 repre-
sentation of the ASCII
character in delimiters.

Enables assembly 1listing (if
it was off),

Disables assembly listing (if
it was on).

B.4.1 Conditional Directives

Mnemonic Operand Stands for

. IFZ E IF E=0

. IFNZ E IF E#0

+IFL E IF E<Q

« IFLE E IF E¢=0

- IFG E IF E>0

« IFGE E IF E=>0(

. IFDF NAME IF NAME
defined

« IFNDF NAME IF NAME
undefined

«ENDC none End of
Conditional

Operation

Assemble what follows up to
the terminating LENDC if the
expression E is 0.

Assemble what follows up to
the terminating ,ENDC, if the
expression E is not 0,

Assemble what follows up to
the terminating .ENDC, if the
expression E is less than 0.

Assemble what follows up to
the terminating .ENDC, if the
expression E is less than or
equal to 0.

Assemble what follows up to
the terminating .ENDC, if the
expression E is greater than
0.

Assemble what follows up to
the terminating .ENDC, if the
expression E is greater than
or equal to 0,

Assemble what follows up to
the terminating .ENDC if the
symbol NAME is defined.

Assemble what follows up to
the terminating .ENDC if the
symbol NAME is undefined.

Terminates the range of a
conditional directive,

B-10

APPENDIX C

COMMAND AND ERROR MESSAGE SUMMARIES

The following summaries are provided for the user's convenience and
are grouped in chronilogical order according to the system program to
which they refer. As these are only summaries, the user is referred
to the appropriate chapter for details.

C.l KEYBOARD MONITOR (Chapter 3)

Command Summary *

Command Explanation
DATE Allows the user to enter the day, month, and

year. This date is then represented in
directory listings.

DIRECTORY Causes a directory listing of the cassette
specified in the command line,

DIRECTORY/F Causes a "fast" directory listing by omitting
current and creation dates and listing only
filenames and extensions,

LOAD Instructs the Monitor to 1load the file
specified in the command line,

LOAD/G Instructs the Monitor to load and start the
- file specified in the command line.

LOAD/O Instructs the Monitor to 1load the file
- = specified in the command line, overlaying the
Monitor as necessary.

RUN Instructs the Monitor to load and execute the
file specified in the command line.

*only those characters underlined need be entered.

KEYBOARD MONITOR (Cont.)

Cormmand

SENTINEL

gEART nnnnn

VERSION

ZERD

Explanation

Causes a sentinel file to be written
immediately folloving the file specified in
the command line,

Instructs the Monitor to begin execution of a
loaded file at the specified {(nnnnn) address,
or at the transfer address if nnnnn is not
indicated.

Causes the version numher of the Monitor
currently in use to be printed on the console
terminal.

Causes deletion of all files on the cassette;
a sentinel file is written at the beginning
of the cassette.

Error llessage Summary

Yonitor error messages are preceeded by one of two svmbols
the type of error which occurred:
? Non-fatal error; execution continues if possible,

otherwise control returns +to the CSI after the
message is printed,

% Fatal error; control returns to the KRL after the
message is printed.

Message
IOT

NO FILE OPEN

OFFLINE

TIMING

Arg Meaning Source
pC Illegal IOT RESMCN
drive # READ or WRITE with no RESMON

SEEK or ENTER

drive # Cassette not mounted; if RESMON
non~fatal, execution is
automatically resumed
when the cassette is mounted
(if the user inmproperly mounts
the cassette, a fatal error
will probably occur)

drive # System software did not RESMON
service an initiated
request fast enough

indicating

KEYBOARD MONITOR (Cont.)

Message Arqg
TRAP PC
WRT LOCK drive #

FILE NOT FND
ILL CMD

NO SENTINEL FILE

SYNTAX ERROR

BAD TAPE

NO START ADDR

PROG TOO BIG

SFTWR CHKSM ERR

TRUNCATED FILE

Meaning

Stack overflow, reference
to non-existent memory,
illegal or reserved
instruction, attempt to
reference a word on a
bvte boundary; the SP at
the time of the trap is
stored in locaticn 44

Cassette write-locked; if
non-fatal, execution is
automatically resumed when
the cassette is write-enabled

Specified file not found
Illegal cormmand

No sentinel file is

present on the tape;

this message cccurs during
use of the DIRECTORY

command at that point during
the directory listing where
the sentinel file is missing

Arguments following a
command are illegal

Hardware checksum error
(note that this error

may alsoc be caused by
READ operations initiated
on a cassette which is
positioned after the
sentinel file)

Loaded program had no
transfer address

Program too big for the
memory limits defined by
the type of load used

Software checksum error
{message followed by number
of errors)

File ends before transfer
address load block is
found

Source

RESMON

RESMON

KBL,
CLOD11

KBL,
CLOD11

CLOD11

CLOD11

CLOD11

KEYBOARD MONITOR (Cont.)

Message Arg Meaning Source
CSI TABLE Command string too big CsI
OVERFLOW for the table
ILLEGAL CHAR: {C.5. Illegal character in CSI
line) command string
ILLEGAIL DEVICE: (C.S. Illegal device specification CsI
line)
ILLEGAL SYNTAX: (C.S. Illegal syntax in command CcsI
line) string
C.2 EDITOR {(Chapter 4)
Command Summary
Input and Output Commands

Command Form Meaning

EDIT READ ER#filnam.ext$ Open a file for input,

EDIT WRITE EW#filnam.ext$ Open a file for output,

READ R Read a page of text from the
input file and append it to
the contents of the buffer,

WRITE nW OQutput a specified number of
-nw lines of text from the Text
ow Buffer to the output file,

w

NEXT nN Output the contents of the
Text Buffer to the output
file, clear the buffer, and
read in the next page of the
input file,

LIST nL Print a specified number of
-nL lines on the console ter-
oL minal,

L
VERIFY \Y Print the current text 1line

{the line containing the
pointer) on the console
terminal.

———

EDITOR (Cont.)

Command Form Meaning

END FILE EF Close the current output
file without performing any
further input/output

operations,

EXIT EX Output the remainder of the
input file +to the output
file and return control to
the Monitor.

Pointer Relocation Commands

Command Form Meaning

BEGINNING B Move the current location
pointer to the beginning of
the line,

JUMP nJ Move the pointer over a
-nJ specified number of char=-
0J acters 1in the Text Buffer,
J

ADVANCE nA Move the pointer over a
-nA specified number of lines
oA in the Text Buffer. The
A pointer is positioned at the

beginning of the line,.

Search Commands

Command Form Meaning

GET nGtext$ Search the contents of the
Text Buffer, beginning at
the current location
pointer, for the next
occurrence of the text
string.

FIND nFtexts$s Beginning at the current

location pointer, search the
entire text file for the nth
occurrence of the specified
character string. Pages of
text are input, searched,
and then output to the
output file wuntil the text
string is found,

EDITOR (Cont.)

Text

Command

POSITION

Form

nPtext$

Modification Cormands

Cormmand

INSERT

DELETE

KILL

CHANGE

EXCHANGE

Utility Commands

Command

SAVE

UNSAVE

Form

Itext$

nD
=-nD
oo

nkK
-nK
OK
K

nC
=-nC
0C
C

nXtext$
-nXtext$
OXtexts
Xtexts

Form

ns

Meaning

Search the input file for
the nth occurrence of the
text string; if the text
string is not found, the
buffer is cleared and a new
page is read from the input
file,

Meaning
Insert text immediately
following the current

location pointer; an ALTMODE
terminates the text.

Remove a specified number
of characters from the
Text Buffer, beginning at
the current location
pointer.

Remove n lines from the Text
Buffer, beginning at the
current location pointer.

Replace n characters, be-
ginning at the pointer, with
the indicated text string.

Replace n lines, beginning
at the pointer, with the
indicated text string.

Meaning
Copy the specified number of
lines, beginning at the

pointer, into the Save
Buffer,

Insert the entire contents
of the Save Buffer into the
Text Buffer at the position
of the current location
pointer.

M

EDITOR (Cont.)

Command Form Meaning
ou Clear the Save Buffer and
r reclaim the area for text.
MACRO M/command string/
Insert a command string into
EDIT's Macro Buffer
F oM Clear the Macro Buffer and

EXECUTE MACRO nEM

Error Message Summary
Message

?2"<>" ERR?

* CB ALMOST FULL *

?CB FULL?

2*EOF*?

?*FILE NOT FOUND*?

?*HDW ERR*?

?2ILL ARG?

?ILL CMD?

‘ ?ILL MAC?

reclaim the area for text.

Execute the command string
specified in the last macro
command.

ﬁxglanation

Too deep nesting, or 1illegal use of
brackets, or unmatched brackets.

The command currently being entered by
the wuser is within 10 characters of
exceeding the space available in the
Command Buffer.

Command exceeds the space allowed for a
command string in the Command Buffer.

Attempted a Read or Next cormmand and no
data was available,

Attempted to open a nonexisting file for
editing,

A hardware error occurred during I/O.

The argument specified was 1illegal for
the command used, a negative argument
was specified where only a positive
argument was allowed, or an argument
exceeded the range + or -16384,

EDIT does not recognize the command
specified.

Delimiters were improperly used, or an
attempt was made to enter an M command
during execution of a Macro, or an
attempt was made to execute an EM
cormand while an EM was already in
progress.

EDITOR {Cont.)

Message

?*ILL NAME*?

Explanation

The filename or device specified in an
E¥ or ER command is illegal.

?*I/0 CHAN CONFLICT*? An attempt was made to open an input

?*NO FILE*?

?*NO ROOM*?

?*SRCH FAIL*?

?*TAPE FULL*?

file on a cassette already open for
cutput, or vice versa.

An attempt was made to Read or Write
when no file was open,

An attempt was made to execute an
Insert, Save, Unsave, Read, Next,
Change, or Exchange command when there
was not enough room in the appropriate
buffer,

The text string specified in a Get, Find
or Position command was not found in the
availahle data.

Available space for an output file is
full! (i.e., there is no room for any
part of the file).

C.3 ASSEMBLER (Chapter 5)

Language Summary

Reference may be made to Appendix B for the CAPS-11 PAL assembly
language surmmary.

Option Summary
Option

/C

/F

Meaning

This option allows an I/0 specification line
to be broken into several segments.

This option is wvalid only after an input
filename and specifies that the Assembler
should not perform a REWIND operation but
should continue searching the cassette in a
forward direction for the file.

9

ASSEMBLER (Cont.)

Option
/0

/P

/X

Meaning

This option is wvalid only after an output
filenarme and indicates that the file
{immediately preceding the option} is to be
created and used only if a previously opened
output file has been written to the end of
the cassette and more output remains.

This option is used whenever a file
referenced in the I/0 specification line
exists on a cassette which is not currently
mounted on a drive, Before attempting to
search for the file, the Assembler instructs
the user to mount the proper cassette on the
drive by printing #? where # represents the
drive number. After the user has switched
cassettes on the drive, he may continue
execution by typing any character on the
kevhoard.

This option is wvalid
filename and causes

only after an output
extended binary output
(i.e., those locations and binary contents
beyond the first binary word per source
statement) to be suppressed from the listing.

Error Message Summary

Error Code

A

Explanation

Addressing error., An address within the
instruction is incorrect; may also
indicate a relocation error.

Instructinns or word
being assembled at an
location

Bounding error.
memory data are
odd address in memory. The
counter is updated by +1.

Doubly-defined symbol referenced.
Reference was made to a symbol which is
defined more than once.

Illeqal character detected. Illegal
characters which are also non-printing
are replaced by a ? on the listing.

Extra characters
(more then 72(decimal)) are

Line buffer overflow.
on a line
ignored.

ASSEMBLER {Cont.)

Error Code Explanation
M Multiple definition of a label. A label
was encountered which was equivalent (in
the first six characters) to a

previously encountered label,

N Number containing 8 or 9 has decimal
peint missing, The number is assemhled
as a decimal number,

P Phase error. A label's definition or
value varies from one pass to another,

Q Questionable syntax. Missing arguments,
the instruction scan was not completed,
or a carriage return was ncot immediately
followed by a line feed or form feed.

R Register-type error. An invalid use of
or reference +to a register has been
made.,

s Symbol table overflow. When the

quantity of user-defined symbols exceeds
the allocated space available in the
symhol table, the Assembler outputs the
current source line with the § error
code, then returns to the initial
dialoque.

T Truncation error, A number generated
more than 16 bhits of significance, or an
expression generated more than 8 bits of
significance during the use of the .BYTE

directive.

U Undefined symbol, An undefined symbol
was encountered during the evaluation of
an expression, Relative to the

expression, the wundefined symbol is
assiqgned a value of zero.

In addition to the error codes listed above, the following messages
may also occur {(error messages which are followed by a question mark
allow the user to type a CTRL/C to return to the XBL, or a CTRL/P to
retry the operation):

“

O

ASSEMBELER (Cont.)

Message

¥BAD CMD STRING

P
?BAD TAPE?
$BAD TAPE
RETRY?

P
EOM?

EOM?

a RETRY?

?FILE NOT FND?

—

Meaning

One of the following errcrs has
occurred in the user's command
string:

No output was specified;

No input was specified;

Input and output were specified
on the same drive;

Input was specified from a device
other than cassette;

Binary output was specified to a
device other than cassette.

A checksum or other hard error
occurred during a file lockup or
enter cormand. Typing any
character will cause the Assembler
to retry the operation.

A hard read error was detected on
one of the input files; typing any
character (other than *C) will
cause the Assembler to retry the
same assembly (in systems larger
than 8K, the Assembler will return
to the CS5I and allow the wuser to
input a new command).

The line printer is out of paper or
is not powered up; the drum gate is
open; or the printer is too hot,

The end of the tape was reached
during cassette output and no
overflow file was specified. The
user may mount another cassette and
then type any keyboard character to
instruct the Assemhler to retry the
assemhly wusing the new output
cassette,

The Assembler could not find one of
the input files. The user may
mount another cassette and type any
character on the keyboard to
instruct the Assembler to retry the
lookup on the same drive. Typing a
CTRL/P will restart the Assembler
(if the system is greater than 8K),.

ASSEMBLER (Cont,)

Message

?NO END STMT

?SWITCH ERROR:'x'?

?TAPE FULL?

C.4 LINKER (Chapter 6)

Option Surmmary
Option

/C

/F

/0

Meaning

The file does not contain an LEND
directive; the Assembler assumes an
+END statement,

An undefined option character (x)
was found in the command string,
Typing any character on the
keyhoard will cause the Assembler
to ignore the option and continue.

The specified output cassette is
campletely full, Mounting a
different cassette on the same unit
and typing any character instructs
the Assembler to attempt to open
the file on a new cassette,

Meaning

This option allows the I/0 specification
line to be broken into several segments.

This option is valid only after an input
filename and indicates that the Linker
should not perform a REWIND operation
but should continue searching the
cassette in a forward direction for the
file.

This option is wvalid only after an
output filename and indicates that the
file (immediately preceding the option)
is to be created and used only if a
previously opened output file has bLeen
written to the end of a cassette and
more output remains.

This option is used whenever a file
referenced in an I/0 specification line
is on a cassette which is not currently
mounted on the unit drive. Before
attempting to search for the file, the
Linker instructs the user to mount the
proper cassette on the drive by printing
#? where # represents the drive number,

LINKER (Cont.,}

Option

/5

/T

— /B:n

/H:n

Error Message Summary

Non-Fatal Errors

- Message

?BAD TAPE?

Meaning

After the user has switched cassettes an
the drive, he mayv continue execution by
tvping any character on the keyhoard,

This option is valid only after an input
filename and indicates that two or more
object modules have been combined {using
PIP) under the single filename. The
option instructs the Linker not to skip
to the next input filename until it has
obtained all necessary information for
the files included in the first,

The /T option is wvalid only after an
input filename and indicates that the
transfer address of this particular
object module is to he used as the
transfer address of the final load
module. If more than one /T option is
indicated in the I/0 specification line,
only the last one is significant.

The program is to be 1linked with its
lowest location at n, If n is not
specified, the Linker assumes location
600.

The program is to be linked with its
highest location at n. If n is not
specified, the Linker assumes that the
last location of the user program will
go just under CLOD1ll; the user can then
use the LOAD/G command to run his file.

Meaning

A checksum or other hard error
occurred during a file LOOKUP or
ENTER command, Typing any keyboard
character instructs the Linker to
retry the operation.

LINKER ({(Cont.)

Message

?BYTE RELOC ERROR AT
ABS ADDRESS XXXXXX

?FILE NOT FND?

?MAP DEVICE EOM?

2MODULE NAME xxxxxx NOT
UNIQUE

?SWITCH ERROR:'x'?

?TAPE FULL?

uxxxxx MULTIPLY DEFINED
BY MODULE xXXXXX

Meaning

This message designates a byte
relocation error. The Linker has
tried and failed to relocate and
link byte quantities; the wvalue is
truncated to 8 bits, the message is
printed, and the Linker
automatically continues.

The Linker could not find one of
the input files. Typing any
keyboard character instructs the
Linker to retry the operation.

The Load Map device EOM error
allows +the wuser an option to fix
the device and continue by typing
any response terminated bv a <CR>
or <LF>, or to abhort the map
listing by typing a tP.

This error results from a
non-unique object module name
during Pass 1. The module is
rejected and the Linker will then
ask for more input,

An undefined option character was
found in the command string.
Tvping any character instructs the
Linker to ignore the character and
continue,

The specified output cassette is
full. A different cassette may be
mounted on the same drive; typing
any keyboard character then
instructs the Linker to attempt to
open the file on the new cassette,

This message results during Pass 1
if globals have been defined more
than once, The second definition
is ignored and the Linker
continues.

c-14

LINKER (Cont.)

Fatal Errors

Message
$BAD CMD STRING

o %CAS, CHECKSUM

$0ODD ADDRESS

$SYMBOL TABLFE OVERFLOW-

MODULE xsoexxx,
XX XK XX

— $SYSTEM ERROR xx

Meanin

One of the following occurred in
the cormmand string: no output or no
input specification; input and
output were gpecified on the same
drive; input was specified from a
device other than cassette; binary
output was specified to a device
other than cassette,

A checksum error occurred while
reading a cassette hlock.

An odd address was specified using
the /B or /H options.

A svymbol table overflow has
occurred.

A systern error has occurred where
XX represents an identifying number
from the following list:

al Unrecognized symbol table
entry found,

a2 A relocation directory
references a global name which
cannot be found in the symbol
table,

a3 A relocation directory
contains a location counter
modification command which is
not last,

04 Object module dnes not start
with a GSD.

05 The first entry in the GSD is
not the mnodule name.

06 A relocation directory
raeferences a section name
which cannot be found.

07 The transfer address

specification references a
nonexistent module name,

C-15

LINKER (Cont.)

Message

All system errors except number 12 indicate a program failure

Meaning
08 The transfer address
specification references a

nonexistent section name.

09 An internal jumn tabhle index
is out of range,

10 A checksum error occurred on
the object module,

11 An ohject module kinary block
is too big (more than
64 {decimal) words of data).

12 A device error occurred on the
load module output device,

in the Linker or the program which generated the object module.
05 can occur if a file is read which is not an object module.

C.5 ODT (Chapter 7)

Command Summary
Command
r/
/

r\ (SHIFT/L)
\

nR

Meaning
Open the word at location r.
Reopen the last opened location.
Open the byte at location r.
Reopen the last opened byte,

After a word has been opened, retype the
contents of the word relative to
relocation register n., If n is omitted,
onT selects the relocation register
whose contents are closest but less than
or equal to the contents of the opened
location,

After a word or byte has Dbeen opened,
print the address of the opened location
relative to relocation register n. If n
is omitted, ODT selects the relocation
register whose contents are closest, bhut
less than or equal to the address of the
opened location.

C-16

either
Error

4y

ODT (Cont.)

Command

) (LINE FEED
key)

~

tor

RETURN

sn/
sY/

Meaning

Open next sequential location.

Open previous location. (The
circumflex, ~ o, appears on some
keyboards and prints in place of the
up-arrow.)

Close open location and accept the next
command.

Take contents of opened location,
indexed by contents of PC, and open that
location., (The underline, .., appears
on some kevhoards and prints in place of
the back-arrow.

Take contents of opened location as
absolute address and open that location.

Take contents of opened 1location n as
relative branch instruction and open
referenced location.

Return to sequence prior to last @&, ~ ,
or + command and open succeeding
location.

Perform a Radix 50 unpack of the binary
contents of the current opened word;
then permit the storage of a new Radix
50 binary number in the same location,

Calculate offset from currently open
location to r.

Open general register n (0-7).

Open special register Y, where Y may be
one of the following letters:

S Status register (saved by
ODT after a breakpoint)

M Mask register

B First word of the

breakpoint table

P Priority register

oDT {(Cont.)

Command

-

Meaning
C Constant register
R First relocation register

{register 0)
F Format register

Fill mermory words with the contents of
the constant register.

Fill memory bvtes with the contents of
the low-order 8 bits of the constant
reqgister.

Separate commands from command arguments
{fused with alphabetic commands below) ;
separate a relocation register specifier
from an addend.

Remove all Breakpoints.

Set Breakpoint at location r.

Set Breakpoint n at location r,.

Remove nth Breakpoint.

Search for instructions that reference
effective address r.

Search for Words with bit patterns which
match r,.

Enable single-instruction mode (n can
have any value and is not significant);
disahle breakpoints.

Disahble single=instruction mode;
reenable breakpoints,

Go to location n and start program run,

Proceed with program execution from
breakpoint; stop when next breakpoint is
encountered or at end of program.

In single-instruction mode only, proceed
to execute next instruction only.

Proceed with program execution from
breakpoint; stop after encountering the
breakpoint k times,

ly

ODT (Cont.)
Command Meaning

_ In single-instruction mode only, proceed

to execute next k instructions,
sR Set all relocation registers to =1
(highest address value).
- inR Set relocation register n to -1.
r;nR Set relocation register n to the wvalue
of r. If n is omitted, it is assumed to
be 0.
a r;C Print the value of r and store it in the
constant register.
r;nA Print n bytes in their ASCII format
starting at 1location r; then allow n
bvtes to be typed, starting at location
r.
CTRL/C Return to Monitor and accept a command
from the keyhoard.
—
Error Message Surmary
No error messages occur under ODT as illegal cormands are ignored; ODT
prints ? and the user may enter another command.
C.6 PIP (Chapter 8)
P
Option Surmmary
Option Meaning
F2: Used with an output filename to designate
that the header bit be set to ASCII {the file

- type is otherwise assumed to be binary).

/C Allows the command string to be broken into
one or more lines.

- /D Causes the filename(s) indicated in the
cormand line to be deleted from the specified
cassette.

/“\

PIP

(Cont.)

Option

/P

/2

Meaning

Requests that the system prompt the user ¢to
change cassettes on the indicated drive
before an attempt is made to access the file,
The system prints:

#2

where # represents the number of the
appropriate drive., When the user has mounted
the proper cassette, he may type any
character on the kevboard to continue
execution,

Indicates that all cassettes on the uwnit
drives specified in the command line are to
be zeroed,

Error Message Summary

Message

?BAD TAPE
?BAD TAPE?

?EOM

Meaning

Hardware checksum error (may alsoc be
caused by READ operations initiated on
a cassette which is positioned after
the sentinel file); a question mark
following the message indicates that
the error is not fatal; the user may
mount another cassette and type any
character on the keyhoard teo continue
execution,

Indicates an out-of-paper condition
for the line printer, console
terminal, or paper tape punch.

7EXCESS INPUT FILES The number of input files exceeds the

number of output files (providing the
number of output files is greater than
one); this error occurs during use of
the file transfer function.

PEXCESS QUTPUT FILES The number of output files exceeds the

?FILE NOT FND?

numher of input files; +this error
occurs during use of the file transfer
function.

The specified file was net found on
the cassette indicated; the user may
mount another cassette and tvpe any
character on the keyhoard to continue

the search,

O

PIP (Cont.)}

Message

’ ?ILLEGAL DEVICE

?ILLEGAL INPUT LIST

?ILLEGAL OUTPUT LIST

P
?1/0 CHAN CONFLICT
?NO FILE NAME
?0FFLINE x

/ﬁ-\
PSWITCH ERROR 'x'?
?TAPE FULL

— ?TAPE FULL?

- ?WRT LOCK x
/_‘-.

Meaning
An illegal device was indicated for
the PIF function used.
An input list was indicated where not
allowed (as when using the zero,

delete, and copy functions), or an
illegal command was entered.

An output list was indicated where not

allowed {as when wusing the copy
function),
An attempt was made to open an input

file on a
output,

cassette already open for
or vice versa.

A filename was not indicated in a
command line which required one.

The cassette is not properly mounted
on drive x. The user should correctly
mount the cassette so that execution
can continue.

An illegal switch was indicated in the
command line, where 'x' represents the
switch in error, The check is made
for as many as 10 illegal switches in
any one command line. Typing any
character on the keyboard will cause
PIP to ignore the switch and continue
execution.

Available space for an output file is
full. A question mark following the
message indicates that the error is
not fatal; the user may mount another
cassette and type any character on the
keyboard to continue execution,

The casgsette is write-locked; X
represents the drive number. The user
should dismount the cassette {the
OFFLINE error message will then be
printed), write—-enable the cassette,
and remount it. Execution will then
continue.

C-21

C.7 RESMON (Chapter 9)

Error Message Surmary

RESMON error messages are summarized in Section C,l under the Keyhboard =
Monitor error message summarv,

c-22

APPENDIX D

SYSTEM DEMONSTRATION

The following is a brief demonstration of the CAPS-1ll system software.
Befcocre proceeding with this demonstration, the user should read the
rest of the CAPS=-11 manual and become familiar with the CAPS-~11 system
programs and conventions. He should pay particular attention to the
second half of Appendix E, which describes reconfiguring the CAPS-11
Monitor for non-standard /0 devices and different memory
configurations. In particular, if the user's system contains a
non-standard console terminal (either LT33 or LT35, parallel LA30
DECwriter, or VT05 display), he should use his reconfigured System
Cassette for this demonstration.

Before starting, the user should have ready the proper CAPS=-11 System
Cassette and two scratch cassettes. The first step of the
demonstration is to copy the System Cassette, The demonstration
should then be continued using this newly created copy.

In general, the user should always keep at least one good copy of the
System Cassette in a safe place in the event that he should accidently
destroy his 'working copy'. Note that this demonstration uses the
System Cassette when it is write-enabled., The purpose is to simplify
the demeonstration; under normal operation, the user should always use
the System Cassette write-~locked.

Please read through the entire system demonstration before attempting
to enter any of the command lines.

D.l SYSTEM START-UP

Write-lock the CAPS=-11 System Cassette by setting the hinged red tabs
so that they are pointed toward the center of the cassette, exposing
the write-protect holes; mount the cassette on drive ¢ (the drive to
the left of the unit). Bootstrap the CAPS-11 Mconitor into memory
using the procedure described in Chapter 3, Section 3.,1. When loaded,
the Monitor will type an identification line and a dot at the left
margin of the console terminal page (subsequent loads w111 cause only
the dot to be printed):

CAPS-11 vol-p2

If this does not occur, check that the terminal is turned on and that
the cassette is mounted properly and retry the bootstrap procedure.

D.2 SYSTEM DEMONSTRATION

This section demonstrates briefly how to use the CAPS-11 system
programs by presenting them in the context of a simple exercise. The
user will copy the System Cassette, and then edit, assemble, 1link,
load, and run a simple demonstration program. In the following
discussion, computer output is underlined when necessary to
differentiate it from user input; a) 1is used to indicate typing the
RETURN key and § indicates typing the ALT MODE key. Mistakes made
while entering command strings may be corrected by typing the RUBOUT
key.

Once the CAPS~11 Monitor has been bootstraped into memory and has
typed a dot, enter the current date by typing a command of the form:
.DA 27-AUG-73)

substituting the current date in place of 27-AUG=73, The Monitor
indicates that it is ready to accept another command by printing a dot
at the left margin of the page. When this dot appears, enter the
following command:

VI

The Version command causes the Monitor to print out the version number
of the Monitor in use, The Monitor should respond by printing:

CAP5-11 VB1=-02
27-AUG-73

After the user has verified that the wversion he is wusing is the
correct one, he should next c¢opy the System Cassette (or his
reconfigured System Cassette) using PIP, Mount a scratch cassette on
unit 1, write-—enabled, and type:

+R PIP)

The Command String Interpreter (CSI) will print an asterisk at the
left margin of the page when it is ready to accept a command line,
Type the following command to copy the System Cassette to the scratch
cassette on drive 1 (the command may be entered as soon as the
asterisk is printed even though program loading may be occuring
simultaneously) :

x1:=03)

This command causes the output cassette {(on drive 1) to be zeroed, and
then copies the entire cassette from drive 0 to drive 1. When the
copy function is complete, the CS5I will type another asterisk, Now
type CTRL/C to return to the CAPS-1l1l Monitor, which will print a dot:

'~

xtC)

Dismount the System Cassette on unit 0 and put it away. From now on,
the copy of the System Cassette just created should be used in the
demonstration. Dismount this copy from unit 1 and mount it,
write-enbaled, on unit 0, then type:

=DI)

The Monitor will list the directory of the copy Jjust produced--a
typical directorv will appear as follows:

27-AUG=-T 23

CTLOAD SYS B8-AUG-73
CAPS11 S8K ©9-AUG-73
PIP SRU_99-AUG-73
EDIT _ SLG P9-AUG-73
LINK __ SRU @9-AUG-T3

00T SLG 09-AUG-73
PAL SRU @9-AUG-73

DEMO PAL 29-AUG-73

Attach this directory listing to the System Cassette on unit 0. Now
mount another scratch cassette on unit 1, write-enabled, and zero it

by typing:

Z 1)

Again, the Monitor will print a dot when ready for the next cormand.
Type in response to this dot:

<R PAL)

This command loads and starts the CAPS-11 Assembler. When the
Assembler is found on +the System Cassette, the CS5I will print an
asterisk at the left margin of the conscle terminal page. When the
asterisk appears, type the following line:

!-_:DEMO)

The command instructs the Assembler to assemble the demonstration
program stored on unit 0 (DEMO,PAL) and print any errors on the
console terminal. The following error message is printed, indicating
that there is an illegal character in the demonstration source file
which must be corrected bhefore the file can be assembled properly:

PASSE 2
1 220826 RAB167" JmP *KBLADR 3 BACK TOQ CAPS-11 MONITOR

200000

APA331 ERRORS

tC?)

In 8K systems, the CAPS=-1]1 Assembler overlays part of the Monitor so
that the system must be re~bootstrapped after an assembly has been
conpleted, The assembler signals the user that it is done and ready
to re-bootstrap the svstem by typing:

t {7

The user should ensure that the System Cassette is still mounted on
unit 0 and then type any character on the console keyboard--the smtire
CAPS Monitor will be bootstrapped into memory and will print a dot
when it is ready for a command.

If the user is running with a 12K or 1larger CAPS-11 Monitor, the
assembler will not overlay the Monitor; thus when the assembly of the
demo program is complete, the assemhler will transfer control to the
Command String Interpreter which will print an asterisk., 1In this
case, return to the CAPS-11 Monitor by typing:

x1C)
Again, the Monitor will print a dot when ready for a command.

To correct the error detected in the assemhly Jjust performed, the
CAPS-11 Editor must be called from unit 0. Type:

2R EDIT)

This command loads and starts the CAPS-1]1 Editor. The Editor will
print an asterisk when it is ready to accept a command. Now enter the
following line {$ represents tvping the ALTMODE kev):

*ERG: DEMOS

There will be a pause before the next asterisk is printed since the
Editor is searching the System Cassette for the file DEMO.PAL. When
the asterisk appears, type:

*EW 13 DEMO1$S

This command instructs the Editor to open an output file on wunit 1;
when another asterisk appears, type the command:

£RGHSVSES

This will read text into the Text Buffer from the input file, search
the buffer for a line containing an * and leave the pointer positioned
immediately following the *, The Editor should type:

)

—

JMP *KBLADR 3 BACK TO CAPS5-11 MONLTOR

This line of text contains an error which must be corrected. Type in
response to the asterisk:

*-COSVS$

This deletes the *, replaces it with @ and verifies the line, The
Editor should now type:

JMP @K BLADR 3 BACK TO CAPS-11 MONITOR

Close the ocutput file by typing:
1EK$$

When control has returned to the CAPS-11 Monitor, a dot will be
printed. Next, run the Assembler by typing:

+R PAL)

When the Assembler is found on the System Cassette, the CST will print
an asterisk. Type the following command to assemble the edited file,
putting the object module on the System Cassette and printing the
listing on the console terminal (the command may be entered as soon as
the asterisk appears; the Assembler will be simultaneously loaded into
RMEMOYY) 3

*DEMO1, TT2=1:DEMO1)

If the user's system includes a line printer, 'LP': may be substituted
for 'TT: in the abhove command to cause the asserbly listing to be
printed on the line printer rather than the console terminal.

The assembler will type 'PASS 2' and then print the 1listing as
follows:

PASS 2
CAPS11 PAL V@1 88/27/73 PAGE 201

+ TITLE CAPS-11 DEMO PROGRAM
H
s CAPS-11 DEMONSTRATI ON PROGRAM
3
$sDEC-11-0TDMA=-A~-LA
JCOPYRIGHT 1973 DIGITAL EQUIPMENT CORPORATION
JMAYNARD, MASSACHUSETTS 01754
3DEC ASSUMES NO RESPFONSIBILITY FOR THE USE OR
JRELIABILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT
3 SUPPLIED BY DEC.
3
3
«GLOBL START
H
3 ADDRESS OF CAPS-11 XBL 1S5 [N LOCATION 5P
H

PPA20D

eeeoB4
020886
Rageer
2RO 10
opea12
PeeR14
PPvR15
PeeR16
PBYR20
Roance
2e8R23
PooB24
RADR26

2832
PPRAI4
PRRR3S

200036
PPBO 40
200041
PBRR a2
o0pRa3
PoPR4a4
PR0A0vAS
PoR046
pooRa7
000050
PRBOS51
200052
PPAB53
200054
PR0AS5
POPRS6
P00057
200060

000050
PoRee15
povR12
P12706 START:
PBR6ee
202004

va1

eeo
PoACen
RovRR4

R4

Ra2
ppoen3z’
BoRDR4 WAIT:

203

292
poBA20"
PPA17T "
208050

203100 MSGBUF!:
Poo
0o

220054
215
g12
143
101
120
123
B55
B61
B61
049
1904
195
115
116
117
123
124

3 SET STACK POINTER

3 RESET CAPS-11

3 TYPE MESSAGE ON CONSOLE

3WAIT FOR IT TO FINISH

3BACK TO CAPS-11 MONITOR

3MAX.S1ZE OF BUFFER
JMODE 1S FORMATTED ASCII

3 STATUS BYTE 1S5 @

MSGEND-MSGBUF=5 JBYTE COUNT

K BL ADR=50

CR=15

LF=12

MOV 1600, %6
10T

+«BYTE 1.0

+« WORD [}

10T

.BYTE 4.’2

« WORD MS5GBUF
10T

+BYTE 32
«WORD WAIT
JMP @K BL ADR
«WORD 1§15
«BYTE 0,0
+WORD

«BYTE CRsLF
«ASCI1

CAPS511 PAL V@1 08/27/72 PAGE

PPRA6 1
oeens2
PRBAE3
oeenes
Roev6S
Po2Rss
oBnRsT
pONeT B
PO0R71
pooar 2
A30073
POODT 4
A2BB7T S
AP07 6

122
191
124
111
117
116
049
120
122
117
187
122
191
115

+ASCII

/CAPS-11 DEMNOSTRATION ~/

pR2

/PROGRAM COMPLETE.”/

J

eooeTT 840

ape108 183

02p10! L17

ogd102 115

2ed183 120

PRR104 114

@veB185 105

PRB1a6 124

Qoa1a7 185

2pa110 @56

aae111 P15 «BYTE CR.LF

@ge112 @12

920113 012 MSGEND: .BYTE LF

P0Q0A0 - END S5TART

CAPS11 PAL V@1 98/27/73 PAGE 223

CR = P0P015 KBLADR = 000850 LF = QOes12
MSGBUF P200032R MSGEND #9011 3R START PROBPORG
WAIT BBOA20R - = PBR114R

P08 ERRORS
tC?

Again, in 8K systems, the system must be re-bhootstrapped after an
assembly has been completed, thus the assembler signals the user that
it is done and ready to re-bootstrap the system by typing:

Ensure that the System Cassette is still mounted on unit 0 and then
type any character on the console keyhoard to re-boot the system,

If the user is running with a 12K or larger CAPS=1l1 Monitor, the
assembler will not overlay the Monitor; in this case, return to the
CAPS=11 Monitor by typing:

:'C)

The Monitor will print a dot when ready for a command.

The assembler's output must be linked before it can be loaded and
started, Run the Linker by typing:

2R LINK)

When the Linker is found on the System Cassette, the Command String
Interpreter will print an asterisk. Type the following command to
link the assembler output file, outputting the load mcedule (DEMO.LDA)
to the Bscratch cassette on unit 1 and printing a locad map on the
console; as with the assembler, 'LP:' may be substituted for 'TT:' if
the system contains a line printer:

1t DEMOL, TT:=DEMO1L /B)

CAPS-11 LINK VD1 98,/27/73
LOAD MAP

TRANSFER ADDRESS: 000600
LOW LIMIT: 000600
HIGH LIMIT: ROO714

L2 EEE R L

CAPS

SECTION ADDRESS SIZE
<: ABS.> 2edpae OPPARe
< > 009600 PBA114

START 202600

PASS 2

When the Linker has finished, it will transfer control back to the

CSI, which will print an asterisk. Type CTRL/C to return control to
the CAPS=11 Monitor:

21CJ

Now type the following command to load the demonstration program into
nemory:

(LOAD 1:DEMO1.LDA)

Once the program has been loaded, the Monitor will print a dot. Next
run the debugging program, ODT, by typing:

<R 0DT)

When ODT has been loaded into memorv, it will type:
oDT Vai

z

From the load map printed bhv the Linker, notice that the lowest memory
address occupied by the program is 600{octal). Therefore, set
relocation register zero to 600 by typing:

6003 0R J

Next, use ODT to correct a spelling error in the output line; this
correction is made only in memory and not permanently in the source
file. (In the following example, data typed by ODT is underlined;
note that) indicates typing a carriage return; ™\ is typed on an LT33
or LT35 by pressing the SHIFT and L keys simultaneously):

#0,55\116 =N 1170
*0,56\117 =0 116)

L 3

=1

Start the program using the 'Go' command in ODT; the demo program will
type a message and then return to the CAPS-=11 Monitor, which prints a
dot:

%6001 G)
CAPS-11 DEMONSTRATI ON PROGRAM COMPLETE.

™

APPENDIX E

CAPS~11 SOFTWARE SUFPORT INFORMATION

E.1l CAPS-11 KEYBOARD MONITOR LOADING PROCESS

The CAPS-11 Monitor loading process is initiated when the wuser 1loads
the bootstrap 1loader (CBOOT) into memory either through use of the
hardware bootstrap or manually wvia the Switch Register. CBOCT calls
the first program on the System Cassette, CTLOAD.SYS, and from there,
as far as the user is concerned, system loading is automatic. A
detailed description of this loading process follows.

E.l.1l Cassette Bootstrap {(CBOOT)

The Cassette Bootstrap is used to load and start any program which is
written in "CBOOT Loader Format"™ and is contained entjirely in a 128
(decimal) byte record; this record must be the first data record of
the first file on a cassette.

"CBOOT Loader Format" programs are defined to be those of length less
than or equal to 128 (decimal) bytes which are linked so as to be
loaded in memory beginning at location 0. A program in this format
begins execution at its first instruction, which must be NOP
(=000240).

CBOOT verifies that the first byte in the program contains 240 as a
method of detecting accidental attempts to boot a program in the wrong
format. If this occurs, or upon occurrence of any I/0 error, CBOOT
halts at location CBOOT+50; at this time the user may examine either
location 0 (which will contain the first byte of the program being
loaded) or the cassette control and status register (TACS=777500) to
determine the cause of the error. The wuser may restart CBOOT by
pressing the CONTinue switch on the computer console.

CBOOT may be executed using an optional hardware bootstrap or it may
be manually loaded by the user. Although CBOOT may be loaded anywhere
in memory (with the exception of 1locations 0-177), it is normally
loaded at location 1000, and references in this appendix will use that
address.

Memory Map #1 in Figure E=3 illustrates a map of PDP-11 memory
following loading of CBOOT, CBOOT is normally used to load PRELDR,
which is the first record of the first file on the CAPS-11 System
Cassette. (Listings of CBOOT and QCBOCT are provided in Pigures E=-4
a]ld E-S-)

E.l.2 Cassette Loader (CTLOAD.SYS)

The first file on the System Cassette is CTLOAD.SYS, which consists of
a data record called PRELDR followed by succeeding data records making
up the program CABLDR (which ends with a copy of CBOOT), as follows:

[RECORDS) 1 2 3 (atc.)

Figure E-1 CTLOAD,SYS

As seen in Figure E=1, PRELDR is the first record of the first file on
the System Cassette. This cassette pre-lcocader is actually a small
program written in "CBQOT Loader Format®™ which is powerful enough to
determine memory size and load succeeding programs into highest
memory. It is linked, loaded, and started automatically by CBOOT at
location 0. A map of CAPS-1l1 memory now appears as shown in Memory
Map #2 of Figure E-3,

The program loaded by PRELDR may be of any size, but it must exist as
data in 128(decimal) byte records immediately following the record
containing PRELDR, and it must be written in "PRELDR Format", PRELDR
format data consists of two bytes (low-order, then high-order)
containing the byte count for the rest of the data (¢=77777), followed
by a memory image (i.e., data only) of the program written so as to
begin at its first locatiocn.

PRELDR first determines memory size, then loads this object program
into highest memory (thus, the program must either be linked into
highest memory or written in position independent code). If an error
(generally a hardware errcor) occurs during loading, PRELDR halts with
the contents of the cassette control and status register in Register
4, Te restart the PRELDR lcocading process, the user should press the
CONTinue key on the computer console,

The programs loaded by PRELDR are CABLDR and CBOOT, which are loaded
into memory as illustrated in Memory Map #3 (Figure E-3).

'l

>

NOTE

Information provided thus far assumes
the user 1is specifically loading the
CAP5-11 Keyboard Monitor from the System
Cassette mounted on drive ¢. In order
to allow booting from cassette drive #1
or from a secondary controller, PRELDR
assumes that Register 0 contains the
address of the desired controller and
that the appropriate drive has been
selected. This should be done manually
by the user before booting (it 4is done
automatically by CBOOT during normal
loading).

The main data portion of the file CTLOAD.SYS is CABLDR, the Cassette
Absclute Loader, This program is used to load programs written in
"Absolute Binary Format", which is the format of all system programs
and all Linker output. Absolute binary format consists of a number of
'load blocks' of memory 4image load data with associated header
information; such a load block has the following general form:

Table E-1
Absolute Binary Load Block Format

Byte # Contents

001

000
Byte Count-low order
Byte Count=-high order
Load Address-low order
Load Address-high order
. Memory Image Data

[W BNV Ny

last byte Checksum

If the byte count of a load block is greater than 6, data is loaded
into memory. If the byte count of a load block is equal to 6, the
load address specified in the load block will be considered to be the
desired transfer, or starting, address of the program:; if this address
is odd, CABLDR will halt, (It is not possible for the byte count of a
load block to be less than 6.)

Immediately after being loaded into highest memory, CABLDR is started
and checks the contents of the Switch Register, which must have been
previously set by the user for one of the conditions listed in Table
E=2:

Table E=2

CABLDR Switch Register Settings

Switch Register

Action

Bit #0=0

Bit #0=1 and
Bit #15=1

Bit #0=1 and
Bit #15=0 and
Bits #1-14=0

Bit #0=1 and
Bit #15=0 and
Bits #1-14=n

Normal load; use loading and starting
addresses as specified in load blocks.
{(This is the switch setting used during
the CAPS-11 system load.)

Relocating lcocad; CABLDR halts s¢ that
the user can set the Switch Register to
the address at which the program is to
be relocated (called the load bias; the
program must be position independent).
Bit 0 of this Switch Register setting is
ignored. The user begins the load by
pressing CONTinue on the computer
conscle,

Contiguous relocating load; the program
is loaded immediately following the last
byte of a previously loaded program,

Nen-contiguous relocating load; n=1
files are skipped and the program is
positioned before the nth file; CABLDR
halts for further user action,

{128 bytes).

Data will be loaded in standard cassette files with a fixed record
CABLDR checks the continuation byte in the file
header record {see the Cassette Standard in Appendix F}, and allows

an additional header record if this byte contains 1. Record size

is determined from the proper header locations.

If CABLDR halts during operation, the user may examine the contents of
Register 4 to determine the reason for the halt as follows:

Table E-3
CARLDR Halts

R4 Contents

Meaning

1 File skip complete; the user should reset the
Switch Regiater for the next desired action
{see Table E-2) and then press CONTinue to
load,

2 Command to relocate noted; the user should
set the relocation address in the Switch
Register and press CONTinue to begin the
load,

{Continued on next page)

7

Table E-3 (Cont.)
CABLDR Halts

R4 Contents Meaning

3 File has no fixed record length; since CABLDR
cannct handle this type of file, the user
should press CONTinue to cause CABLDR to skip
to the next file.

4 No transfer address was found in the last
Joad block; the user should set the address
in the Switch Register and press CONTinue to
go to the next file.

1xxxxx Hardware error; The contents of the cassette
and control status register are displayed in
Register 4. Three basic types of hardware
errors may occur:

Error Action
Ooff-Line, Write-Lock Press CONT to retry
function.

Clear Leader, File Gap Pile is not in legal
LDA format and is
ignored. Set the
switch register
(refer to Table E=2)
to indicate which
file to skip to, or

insert another
cassette, and press
CONT.

Timing and Block Check Retry function 3
times before halting
again, Pressing
CONTinue causes
CABLDR to skip the
current file and try
the next.

Software checksum errors are noted but do not affect the lecading
process., At the termination of loading, the last location in CABLDR
(SFT'CHR) will contain the number of software checksum errors
encountered.

NOTE

In order to allow booting from cassette
drive 1 or from a secondary TAll
controller, CABLDR assumes (on entry)
that Register 0 contains the desired
controller address with the appropriate
drive selected., This is ordinarily done

by CBOOT, or manually by the user before
booting.

Once in memory, CABLDR may be started
manually as follows:

1. Select appropriate drive in desired
control and status register;

2. Deposit that controller address
into RO;

3. Start CABLDR at location x6570
where x corresponds to memory size
as follows:

x Memory Size
1 4K
3 BK
5 12K
7 16K
11 20K
13 24K
15 28K

To load from drive 0 of the cassette
control and status register (=777500)
without setting up RO, start CABLDR at
location x6572,

E.1.3 Cassette Monitor (CAPS11.SYS)
In the Monitor loading process, the file lcaded by CABLDR is

CAPS11.SYS, which is made up of +two programs, CSYSLD.LDA and
CAPS11.LDA, as follows:

CSYSLD. LDA CAPSI1, LDA

Pigure E=2 CAPS11.SYS

CSYLD.LDA is loaded first by CABLDR at location 1100 (refer to Memory
Map #4 of PFigure E.,3) and is simply a special version of CABLDR
medified to load a program consisting of 128 byte records; the load
begins with the byte immediately following CSYSLD.LDA; this is the
first byte of the second file comprising CAPS11.SYS-~-CAPS11.LDA. Part
of this locad overlays the normal CABLDR originally stored in high
memory, and part is loaded into low memory, overlaying PRELDR. A map
of memory now exists as shown in Memory Map #5 (Figure E~3).

The CAPS-11 System is now fully loaded into memory.

'

C BC

or

MEMCRY MAP 1

——-_tBcOor __] X7710
CABLDR
X6570
———————————— 1070
¢ BOOT
L1000
I
PRELDR
0

MEMORY MAP ¥ 3

1070

1000

Key for X
x Mamory
1 4K
k] 8K
5 12K
7 16K
N 20K
13 24K
15 28K
b —— e — — 1070
C BCOT
——————————————— 1000
200
PRELDR
]
MEMORY MAP #2
——-fERoT_] 7o == chdl_ .. X7710
CABLDR
————————————— X6570
CAPS11.LDA
~fx-1] 1500
Ja s B
14 . . A
CS5YSLD. LDA 1100 -___C-SY_SLE_lEi____
——————————— 1070 _—_——— e —— — — 170
C BOOQT C BOOT
—————————————— 1000 fe e e e = e = = 1000
___________ 200 264
PRELDR CAPS11. LDA
0 0

MEMORY MAP #4

MEMORY MAP #5

Figure E-3 CAPS-11 Loading Process

CAPS11 PAL V@1

CAPS511 FAL Vo1

220000

o e s W e e W e s W e B ee er e e ler e lee Ter e fee e et Y e e er e e e b e

3

PAGE pa!

«.TITLE CBOOT (CAPS-11) VBi1-06 5/30/73

PDP-11 CASSETTE BOOTSTRAP

COPYRIGHT 1973 DIGITAL EGQUI PMENT CORPORATI ON,

MAYNARD,MA.

DEC-11-0TCBA-A-LA

: P. JANSON

CBOOT WILL LOAD AND SUCCESSFULLY START

ANY PROGRAM WHICH IS WRITTEN IN 'CBOOT

L OADER FORMAT® AND [5 CONTAINED ENTIRELY

IN A 128. (DECIMAL) BYTE RECORD WHICH IS5 THE
FIRST DATA RECORD OF THE FIRST FILE

OF A CASSETTE.

CBOOT IS POSITION INDEPENDENT.

TO BOOT FROM UNIT #1 OR FROM SOME OTHER
CONTROLLER, SET UP RP WITH THE DESIRED
CONTROLLER ADDRESS AND SET THE UNIT SELECT
BLIT AS DESIRED» THEN START THE BOOTSTRAP
AT THE THIRD INSTRUCTION. PRELDR AND
CABLDR WILL USE R@ A5 SET-UP AT BOOTSTRAP
TIME TO CONTINUE LOADING FROM THE

SELECTED UNIT.

CBOOT DOES A REWIND, SPACES FORWARD

A RECDRD (TO SKIP OVER HEADER OF FIRST

FILE), AND STARTS READING THE NEXT RECORD.

A CRC CHECK IS5 MADE AT THE END OF THE RECORD.

S1ZE = 28. WORDS

PAGE pp2

«GLOBL CBOOT

+CSECT

20030 Rp=1%2
R1=%1
R2=1%2
R3=%3
PC=X7
TACS=177500 3TA-11 CONTROL AND STATUS REG.

222021
poope2
292803
geaan7
177500

3

Figure E-4 CBOOT

a000a3a
P30004

202006
220010

PAAB14

600020

ooge22
PBRR24

000026
po0a3e

popalz
PoRa34

200836

PRgn4a2

PoBR46

peoRSA
peRAS2

PO0A54
PArA56
200060

PRdase2

PBPp64

PABA66

p12760
177500
205010
12781
Pa2701
oogesa2

p12702
BBA3TS

112183

112118
1090413

138310
PALTTE

185202
100772

116812
paepp2
120337
ol a5l
P17 67

2200303
864755

295712
100774
eas5ae7

P17 6402

paz2415

112024

2020001

CBOOT:

RESTRT:

3
LOOP1:

L O0P2:

STOP:
DONE:

3
TABLE:

MOV #TACS, RO

CLR {R®

MOV PC,R1

ADD #TABLE-.»R1
MoV #375, RE
MOovB (R1)+4R3
MOovB {R1)+., (R
BMI DONE

BITE R3, (R®)

BE® L O0OP2
INCB R2

BMI LOOP]
MOVB

CMPB R3.a#0
BE® LooP2
HALT

BR RESTRT
TST (R®)»
BMI STOP
CLR PC

+ WORD 17640

« WORD 2415

+ WORD

+END

Figure E-4

2{R2) +» (R2)

112024

3 SELECT WNIT we
JUSE FOR PIC
3 R1 HOLDS ADDR. OF

s COMMAND TABLE
JMEMORY PTR. AND

3 DATA FLAG
JTEST BITS

JCOMMAND FROM TABLE
3TO TACS. WHEN COMMAND
JCODE NEG.» QUIT

JTEST READY AND T-REQ.
JBITS IN TACS

JLOOP 'TILL SOMETHING
1 COMES UP

3 ADVANCE MEMORY PTR.
3IF MINUS: TRY NEXT

3 COMMAND

3 READ DATA INTO MEMORY

SFIRST BYTE READ

3 SHOULD BE '248°

3IF O«K.» GO READ

3 ANOTHER BYTE

JHALT ON ERROR

3 RESTART ON CONTINUE

3CHECK FOR ERROR
JHALT ON ERROR
3= ‘JMP @0’

3.BYTE 240:

3 READY+ T- REQ.

3.BYTE 3T
31LBS+READY+ GO

$.BYTE 151 SFB+GO
5.BYTE 5: READ+GO
3.BYTE 241 READ+ILBS
3} .BYTE 224:
3READ+ILBS+E. 0. TABLE

CBOOT (Cont,)

CAPS11 PAL V@1 06/85/73 PAGE pa1
+.TETLE QCBOOT Vv@1~@85 5/26/73

3
3 PDP-11 QUICK CASSETTE BOOTSTRAP
]
3 COPYRIGHT 1973 BY DIGITAL EQUIPMENT CORP..
3 MAYNARD, MA. -
3 BY: ROY FOLK
|
3 LOADS ONE RECORD UNTIL ERROR. LOADS AT 8.
3 DOES REWIND AND SKIPS FERST RECORD OF FIRST FILE.
3 STARTS LOADED PROGRAM AT B.
3 THE CODE IS POSITION INDEPENDENT. o
]
3 TO BOOT FROM DIFFERENT UNIT OR CONTROLLER, SET
3 UP R@ AND CORRESPONDING TACS REGISTER AS DESIRED
7 MANUALLY AND START AT THIRD INSTRUCTION OF BOOT.
3 N
3 SIZE = 28. WORDS
3
002200 «CSECT
3
900080 RO= z0
900001 Ri= z1
20PPO2 R2= z2
P08P@7 PC= 27
177508 TACS= 17750@ 3 TA-11 CONTROL AND STATUS REGISTER
]
802022 212700 QCBOOT: MOV #TACS, R® -
177508
PP020A PBSO1D CLR (R®) JSELECT UNIT #0@
008236 910761 MOV PCsRI JLOAD HEAD OF TABLE
P2OB18 662781 ADD #TABLE-.,R1 JINTO REG. PIC'LY
800034
200814 112102 MOVB CR1)+,R2 3= MOV #177775,R2*
200016 112118 FUNC: MOVB CRI1D+, ¢ RE) 3 SELECT FUNCTION AND
002920 932718 LOOP: BIT #1982240, (R 3 GO TEST ERROR, READY.
120249
3 TREGQ.
020224 081775 BEQ LOOP JLOOP *'TILL SOMETHING —
JHAPPENS« ...
000026 100201 BPL GOON INO ERROR - GO ON
PPOP30 B05807 CLR PC 3START PROG. ON FIRST
820032 0P5282 GOON: INC R2) ERROR COUWNTER AND
IMEMORY ADDR.
P00834 180770 BMI FUNC JDO REWIND, SFB, READ}
3THEN GET BYTES
BORP36 116012 MOVB 2(R®) s ¢ R2) JACTUAL LOAD 2
880802 '
220042 PROT 66 BR LOOP 3JWAIT, THEN GET MORE
JUNTIL ERROR
3
808844 817775 TABLE: .WORD 17775 3.BYTE 375: FOR .
JR2 COUNTER
3.BYTE 3T:
3 REWIND+ILBS+GO
200046 8P241S » WORD 2415 JeBY LE 15! SFB+GO
3.BYTE S: READ+GO
] N
TL.LLY +END

Figure E-5 (QCBOOT

E-10

E.2 BUILDING MEMORY CONFIGURATIONS FOR THE CAPS-11 SYSTEM

A CAPS=-1l1 System configured for 8K is stored on the System Cassette
included in the CAPS~1l software package, Upon first receiving the
system, the user should read the documentation to familiarize himself
with Caps-1l.

If his hardware includes additional memory or a non-standard terminal
or line printer, the user will want to reconfiqgure his CAPS=11 system
to take advantage of this hardware, The Linker stored on the B8K
System Cassette is used for the reconfiguration process, In addition,
the user should have ready two blank cassettes and the two O0OBJ
Cassettes containing the following directories:

OBJ Cassette #1 OBJ Cassette #2
CSYSLD LDA KBLRES OBJ
KBLRES OBJ PAL OBJ
KBL OBJ P125YM OBJ
CABLDR 0OBJ P16SYM OBJ
CSI OBJ LINK OBJ
CLOD1l OBJ CSITAC OBJ
RESMON OBJ PBSYM OBJ
CBOOT OBJ
LA30OP OBJ
VT0S OBJ
LP80 OBJ
opT OBJ
PIP OBJ
CSINBF OBJ
EDIT OBJ

Ensure that the 8K System Cassette and the two OBJ Cassettes are
write-locked; write-enable the two blank cassettes. Mount the 8K
System Cassette on drive 0 and bootstrap the CAPS-11 System (refer to
Chapter 3).

To reconfigure the Monitor files, the user must first consider which
hardware options are present on his system, Standard hardware devices
include serial LA30 and l132-column line printer. Non-standard devices
include parallel LA30, LT33 or LT35 Teletype, VT05 and 80-column line
printer. If reconfiguration is necessary because of non-standard
devices, the user will find it helpful at this point to patch the
Monitor so that the non-standard devices (in this case, specifically
the conscle terminal) can be used more efficiently during the
reconfiguration process itself, Tc make the patch, follow the
procedure listed below:

1. After the BK CAPS-11 Monitor has typed the versicon message on
the terminal, set the ENABLE/HALT switch to HALT

2, Set the Switch Register to 000056
3. Depress LOAD ADDRESS
4, If the conscle terminal is a:

a. LT33 or LT35 Teletype or parallel LA30, set the Switch
Register to 000000; go to step 5

b. VT05, set the Switch Register to 002012; go to step §

5. Raise the DEPosit switch
6., Set the ENABLE/HALT switch to ENABLE
7. Depress the CONTinue key

NOTE

The user is advised to read through the
remainder of this section before
entering any of the following command
lines. All command lines are terminated
by a carriage return (J)}).

After the patch has been made, continue with the system
reconfiguration by mounting one of the blank cassettes on drive 1;
enter the current date and zero the blank cassette using the commands:

+ DA dd=-mmm-yy) (day=-month-year)

I 1)

Next run the BK System Linker and enter the command 1line and a
carriage return as shown below; the command line may be entered as
soon as the asterisk is printed even though the Linker is being
simultaneously loaded into memory.

SR LINK)
#1: CAPS11,TT:=KBL /P, CABLDR /F, CSI /F»CLOD11/F, RESMON/F/C)

Because of the /é option, the Linker will not initiate action until
the second half of the command 1line is typed; see Section E.2.1,
following.

NOTE

If the system includes a line printer,
the output device specification LP: may
be substituted for TT: in all command
lines described in this section. If the
user does not desire a 1listing of the
load map, he may omit the listing output
specification entirely from all command
lines,

E.2.1 PReconfiguring the Monitor

To reconfigure the Monitor files for a standard system (i.e.,, one that
includes the standard devices—-=-serial LA30 and 132-column line
printer) continue the previously entered command line by entering the
following:

1

» CBOOT /F /Ht XXXXXX)

The response for the /H option depends upon the size of the system to
be reconfiqured as follows:

Table E-4
Monitor /H Option Responses
Memory Size XXXXXX
12K 60000
16K 100000
20K 120000
24K 140660
28K (or larger) 160000

To allow reconfiguration for non-standard devices, modifications must
be made to the continued portion of the command line. The user should
choose the command line which corresponds to his hardware
configuration from the descriptions which follow.

PARALLEL LA30 COR TELETYPE

If the console terminal is a parallel LA30 or LT33 or LT35 Teletype,
the second line of the command string must be entered as follows:

» CBOOT/F,LA3AP /F /I XXXXXX)

The response for /H is taken from Table E-4.

PARALLEL LA30 OR TELETYPE AND 80-COLUMN LINE PRINTER
If, in addition to a parallel LA30, LT33 or LT35 Teletype, the system
includes an 80~-column line printer, the second line of the command
string becomes:

»CBOOT/F,LA3BP/F,LP3@/F /H1XXXXXX)

Again, the response for /H is taken from Table E-4,

VTO5

If the console terminal is a VIr05, the second 1line of the command
string is the following:

» CBOQT /F, VTBS5 /F /H1 XXXXXX)

The response for /H is taken from Table E-4,

VT05 AND 80-COLUMN LINE PRINTER

If the system includes a VP05 and an 80-column line printer, the
command line must be entered as follows:

» CBOOT/F, VTB5/F,LPB0 /F /H I XXXXXX)
The response for /H is aqain chosen from Table E-4,

Thus, for example, if the system includes a VT05 and an 80 column line
printer and is to be reconfiqured for 16K, the entire command line
would be entered as:

#1:CAPS11.LPt=KBL /P, CABLDR/F»CSI /F, CLOD11/F, RESMON/F/C)
»CBOOT/F, VTOS5/F,LPBA/F/H2 100000)

When the entire command line has been entered followed by a carriage
return, a prompt message will occur (0?); mount OBJ Cassette #1
{containing the files KBL.0BJ, CABLDR.OBJ, etc.) on unit 0 and type
any character on the keyboard to continue execution. When the prompt
message occurs for pass 2, again respond by typing any character on
the keyboard. After the command has been executed, control returns to
the Linker which prints an asterisk indicating that it is ready to
receive another command. If the system includes 8K of memory and the
user is reconfiquring the Monitor only to take advantage of a
non-standard device, his reconfigquration is complete and he should
skip to Section E.2.6 to create his new System Cassette. If the
system includes more than 8K, continue the reconfiguration process as
described helow,

E.2.2 Reconfiquring PAL

Rewind OBJ Cassette #1 and then mount OBJ Cassette #2 ({(containing
PAL.OBJ, etc.) on drive 0 and enter the following:

A1:PAL. SRU, TT: =KBLRES. PAL /F /C)
»P12SYM/Floxr P16SYM/F1,CSITAC/F/B: 400)

The file P12SYM ia used for reconfiguring PAL for a 12K system; Pl6SYM
is used for all systems which are 16K or more,

E.2.3 Reconfiguring LINK

The 8K Linker contains room for approximately 225{decimal) symbols; if
the user needs more, he can next reconfigure LINK as follows:

13LINK » SRU TTt =LINK» CSI TAC /F M +XXXXXX)

where xxxxxx represents one of the following:

E-14

E

Table E=-5
Linker and ODT /H Option Responses

Memory S5ize XXXXXXK
12K 41500
16K 61500
20K 101500
24K 121500
28K {or larger) 141500

E.2.4 Reconfiguring ODT

Rewind OBJ Cassette #2, ODT is next reconfigured by mounting OBJ
Cassette #1 on unit 0 and entering the following command line:

212 0DT+ SLG» TT2 2 KBLRES, ODT /F /H L XXX XXX J)

The value for xxxxxx is also chosen from Table E-5.

E.2.5 Reconfiguring PIP and EDIT

There is no need to relink PIP or the Editor since these programs use
the same amount of memory in any size system.

The user is now ready to create the new System Cassette.

E.2.6 Creating a New System Cassette
Return to the Monitor by typing:

TC)
Rewind OBJ Cassette #1 and mount the BK System Cassette on unit 0;

obtain a directory listing of the cassette on unit 1 {(which contains
all the newly reconfigured files) by typing:

When the directory has finished listing, remove the cassette from unit
l, write-protect it, and attach the directory listing to it. The

second blank cassette should next be mounted on unit 1 and zeroced,
Then run PIF and type the cormand line as shown below:

.._Z IB)
;R PIP)
*1: CTLOAD. SY 5=CTL OAD. SY S)

The command line may be entered as soon as the asterisk appears.
Control remains in PIP, so when this transfer is complete, mount OBJ

E-15

Cassette #l1 (containing CSYSLD.LDA, etc.) on unit 0 and enter the next
command:

:I:CAPSI1-Snn=CSYSLD.LDA.CAPSlI-LDA/P P)

The values for nn are taken from the following list; this causes the
file to be 1labeled so0 as to correspond with the memory size of the

system:

Table E-6
System Cassette Labeling Responses
Memory Size nn
8K BK
12K 12
16K le
20K 20
etc... etc...

When the prompt message occurs, the user should rewind OBJ Cassette #1
and dismount it from unit 0; mount the cassette containing the
reconfiqured files (i.e., the new version of CAPSll) and type any
keyboard character to continue execution.

When PIP returns an asterisk indicating that the transfer is finished,
the user can copy PIP and the Editor from the 8K System Cassette using
the command:

%12 PIP.SRU, EDI T+ SLG=PI P. SRU, EDI T+ SLG)

The remaining files comprising the CAPS-11 system should next be
copied to the new System Cassette using any order desired. The
recommended order of files is:

CTLOAD SYS
CAPS51) 58K
PIP SRU
EPIT SLG
LINK SRU
oDT S5LG
PAL SRU
DEMO PAL

If the user has reconfigured LINK, ODT, or PAL, he should copy these
programs from the cassette containing the reconfigured versions,
Otherwise, he should copy them from the original BK System Cassette.
The DEMO program on the 8K System Cassette should be the last program
copied.

The PIP commands to perform these transfers are as follows:

Mount the cassette containing the proper version of LINK on unit 0,
write-locked, and type:

#1:LINK. SRUsSLINK. SRU)

E-1%6

Mount the cassette containing the proper version of ODT on unit O,
write-locked, and type:

*1: 0DT.SLG=0DT. SLG)

Mount the cassette containing the proper version of PAL on unit 0,
write-locked, and type:

#*13: PAL . SRU=PAL. SRU 2

Lastly, mount the BK System Cassette on unit 0, write-locked, and
type:

*1:DEMO. PAL=DEMO. PAL)
A directory listing of the new System Cassette should be obtained when
all transfers are complete and compared to the directory listing above

to ensure that all files are present. Several copies of this cassette
should next be made {(using the PIP copy function).

The user is now ready to try the demonstration program in Appendix D,

L)

-

APPENDIX F

CASSETTE STANDARDS

The information in this document is subject to
change without notice and should not be construed
as a commitment by Digital Equipment Corporation,
Digital Equipment Corporation assumes no
responsibility for any errors that may appear in
this document.

The software described in this document is
furnished to the purchaser under a license for use
on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice)
only for use in sduch system, except as may
otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no
responsibility for the use or reliability of its
software on equipment that is not supplied by
DIGITAL.

F.1l INTRODUCTION

Following is a description of the format and labeling conventions for
files and records written on Digital Equipment Corporation TUG0
cassettes and specifically for those written under the CAPS-=1l system.
This standard must be followed when reading and writing cassettes
intended for interchange between systems; it is recommended for other
cassettes,

The standard describes provisions for file header records which
contain information on filename, creation date, record length and data
format. There is room in the standard header record for twelve bytes
of additional information which can vary from system to system. There
is also provision for an extra header record if twelve bytes are not
sufficient for additional file information.

The subset of the standard {described in Section F.4) details the
minimum requirements that any cassette system should support. This
restricted standard includes header record labels, fixed-length,
128~byte records, and date. No support is required for
variable-length records, multi=-volume files, or expanded information
in a second header record.

F.2 DEFINITIONS

A cassette consists of a sequence of one or more files, separated from
each other by a single file gap. The first file on the cassette must
be preceded by a file gap; the last file must be followed by a file
gap and a sentinel file (refer to paragraph F,3.3), or by clear
trailer.

Each file consists of a sequence of a header record plus zero or more
data records separated from each other by record gaps. The first
record of a file is called the file header record, or file label,

A record consists of a sequence of from one up to 216'l cassette
bytes followed by a two-byte cyclic redundancy check. (This is a
logical limit; there is no physical limit, except for +the length of
the tape.)

A cassette byte is eight bits. A bit is a binary zero {(0) or one (1l).
A character is a byte interpreted wvia the ASCII character codes.

Parity is not required and CAPS~1l ignores the high-order bit of ASCII
data.

F.3 THE FULL STANDARD

F.3.1 Applicability

This standard is intended to allow full utilization of the
capabilities of cassettes.

F.3.2 The Header Record

THE FILE NAME

Each file must begin with a 32 (decimal) byte file header record,
Pigure F-l1 illustrates the format of the header record. The name and
the date are in seven-bit ASCII,

LENGTH IN BYTES [DECIMAL}) 9 } 2 11 [} 12
FILENAME DATE UNUSED SS }
L 1 1 1 1 i 1 1 L 1 i L 1 i 1 Hl 'l 1 [i
BYTES NUMBER o1 5 10 15 20
{DECIMAL] f
TYPE
RECORD LENGTH
SEQUENCE
CONTINUED

Figure F-1 File Header Record Format

The first nine bytes of a header record contain the file's name. File
names are divided into a six-character "name" and a three character
"extension®., File names and extensions may consist of letters,
numerals and blanks., The first character may not be blank; there can
be no imbedded blanks within name or extension; name or extension may
be padded on the right with blanks.

NOTE

When a file is deleted, the current
systems change the name to begin with an
asterisk (*), in addition to setting the
type bit {(described next) to 14.

THE FILE TYPE

Byte nine in the header record contains the "File Type". The File
Type defines the mode in which data was recorded in that file, Table
FP-1 lists the file type codes and gives the meanings associated with
them {(CAPS-ll uses file type codes 1, 2, and 14).

Table F-1
Standard File Types

Type Description
1 ASCIY (seven bits per character--high-order bit
undefined)
2 Paper Tape Image (non-ASCII): one frame per byte

{operating system dependent)

3 Core Image Format #1
One 36-bit computer word in five bytes (wastes
low-order four bits of the fifth byte)

4 Core Image Format 2
One 12=-bit computer word in two bytes (only the
low=-order six bits of each byte is used)

] Core Image Format #3
One 18-bit word in three bytes {wastes
low-order six bits of the last byte)

6 Core Image Format #4
One 36=-bit computer word in six bytes (only the
low-order six bits of each byte is used)

7 Core Image Format #5
One l6-bit computer word in two bytes
10 Core Image Format #6 (0S/8 character packing)
Three bytes for two 1l1l2=bit words, as shown
helow:
1 1
11 Core Image Format #7
Two 36-bit words in nine bytes.
12 Core Image Format #8
Four 18-bit words in nine bytes.
13 Bootstrap File
14 Bad File

FILE RECORD LENGTH

Bytes 10 and 11 of the Pile Header Record contain the file record
length (the file record length is fixed at 128 bytes per record).

L

NOTE

Byte 10 contains the high-order bits.
Thus, record length = 256*contents of
byte 10 plus contents of byte 1l.

FILE SEQUENCE NUMBER

Byte 12 contains the sequence number for multi-volume files, It 1is
normally zero, otherwise, It is used for information that is split up
among files of the same name. Successive continuation files on
different cassettes should be numbered 1, 2, 3, ... etc, in this
field. (CAPS-11 does not support multivolume files,}

HEADER CONTINUATION BYTE

Byte 13, when non-zero, specifies the number of bytes in an auxiliary
header record, which immediately follows this record, If it is zero,
data begina immediately with the next record. The format of auxiliary
header records is not specified at this time. (CAPS-1l does not use
auxiliary header records.)

FILE CREATION DATE

The file creation date is contained in the six bytes starting at byte
14, When specified, this date shall consist of six seven-bit ASCII
digits specifying the day number (01-31l), the month number (01-12),
and the last two digits of the year number, in the order ddmmyy. If
not used, the first byte should be zero (null), or blank (ASCII=40).

UNUSED BYTES

The twelve bytes starting at byte 20 are not currently specified,

F.3.,3 Logical End of Tape

Logical end of tape is signified by clear trailer or a sentinel file,
The sentinel file consists of a single header record wheose file name
begins with a zero (null).

F.4 THE RESTRICTED STANDARD

F.4.1 Applicability

CAPS-11 supports a subset of the cassette standard described
previocusly, Features suppcrted and not supported are listed below.

F.4.2 Restrictions

RECORD LENGTH

Records shall be 128 bytes long.

NO CONTINUATION HEADER RECORD

The second record in a file must be a data record.

NQ SUPPORT FOR MULTI-VOLUME FILES

No support for malti-volume files is required.

F.4.3 Inclusions

The restricted standard (as implemented under CAPS-~1ll) requires
support for the following items described in the full standard:

e The Pile Name
e Logical End of Tape
e Read the (first) header record

@ File Creation Date (may be blanks)

F.5 SUPPORT FOR MULTI-VOLUME FILES

The following information should act as a guideline to users who wish
to implement multi-volume cassette support in their system. The
easiest way to support multi-volume files is the "fall off the tape"
method. Whenever the end of a tape is reached before a file has been
closed, the system should type out a message to that effect and allow
the user to mount another tape, if necessary,

"

) Oon READ, the system should:
l. Type out the message;

2. If the user indicates that the end of file has been
reached, the system should react as such;

3, If the user indicates that end of file has not been
reached, the system should allow the user to mount
another tape, indicate the controller, and tell the
system to continue processing;

4, The system should verify that there is a file on the tape
with the same name and the next higher volume number as
the previous file:

5. If that 1is the case, the system should continue
processing the file,

® On WRITE, the system should:

1. Erase any partially-written record by backspacing twoc and
forward-spacing one, and writing an EQOF to the end of the
tape;*

2. Type out the messacge:
3. Allow the user to mount a new tape;

4. The system may either assume a blank tape, or space to
logical end of tape; then write a file gap followed by a
header record(s) with the proper name and volume number;

5. Continue processing.

The other method involves using the sentinel file, as outlined in the
standard. The procedure is as follows:

) On READ, the system should:

1. Examine the next header record whenever it encounters a
file gap: when there is no sentinel file at end of tape,
assume end of file;

2., If the header represents a sentinel file and the sequence
byte is one greater than that of the file just being
read, the system should request the user to mount another
tape; if not, the system should report end of file;

3. If a sentinel file indicates more wvolumes exist, the
system should allow the user to (1) mount another
cassette, (2) indicate where it is, and (3) tell the
system to continue processing;

*When using 128-byte records, the hardware will never mistake the
inter~record gap plus the erased tape for a file gap. This is
possible when using larger records. Systems using such records should
consider the second method for supporting multi-volume files.

5.

The system should verify that there is a file on the tape
with the same name and the next higher volume number as
the previous file;

If that is the case, the system should continue
processing.

) On WRITE, when the system reaches the end of tape, it should:

1-

6.

7.

Erase enough records to allow a file gap and a sentinel
file to be written (this involves double buffering in the
case of large records, and triple or even dquadruple
buffering, in the case of small records);

Write out a file gap, and regquest the operator to mount
another cassette;

If the operator indicates there will be no extra
cassette, the system should (1) write out a sentinel file
with a null sequence byte, and (2) tell the operator he
can dismount the cassette (clearly, the operator loses
some data if he does not mount another cassette);

If the operator indicates he wishes to mount another
cassette, the system should (1) write out a sentinel file
with sequence byte egual to the current files sequence
number plus one, and (2) tell the operator he can
dismount the cassette;

The system should allow the operator to (1) mount another
tape, (2) indicate the controller and drive number that
holds the tape, and (3) tell the system to continue
processing;

The system should space to logical end of tape, then
write a file gap followed by a header record(s) with the
proper name and volume number, followed by the recoxds
erased from the previous cassette; and

Continue processing,

When processing cassettes that may have been written on the other
gystems, it may be wise for gystems that support the full method for
multi-volume files to support the "fall off the tape™ method, too.

‘4

5%

APPENDIX G

CAPS-11 ASSEMBLY INSTRUCTIONS

G.1 GENERAL INSTRUCTIONS

Listed below are assembly instructions for the CAPS-11 Monitor and
system programs. Due to symbol table size, note that some of the
system components cannot he assembled under the standard 8K CAPS-11
assembler, but require at least the 12K version of PAL,

The following general instructions apply to all assemblies in this
appendix:

l. Mount the System Cassette write~locked on unit 0 and
bootstrap the CAPS-11 Monitor.

2. When the Monitor is locaded and responds with a dot,
type:

«-R PAL

3. Mount the proper source cassette (ohtained from the
Software Distribution Center) on unit 1, write-locked
(this will be the cassette containing the first file in
the input field of the command line).

4. When the Command String Interpreter types an asterisk,
enter the appropriate command string followed by a
carriage return.

5. When the prompt message (0?) is typed during the second
pass of the assembly, dismount and the System Cassette
from unit 0 and mount an output cassette (on which the
binary OBJ files will be stored) write-enabled on the
unit; type any character to continue execution.

NOTE

If the user's CAPS-1l system is 12K or
more, the /P (prompt option) is
necessary only on the first assembly.
Since the system does not need to be
rehooted hetween assemblies, the user
may mount one cassette on unit 0 and

output as many OBJ files as will fit
before mounting a new cassette.

When the assembly is complete, PAL will type the
message: 000000 ERRORS (with the exception of the
Editor, in which there are several line buffer overflow
errors; extra characters on a 1line greater than 72
characters in length are ignored and are indicated on
the listing by an 'L message.) In an BK system PAL will
next respond by typing 4C?; the user should dismount the
cassette on unit f, remount the System Cassette,and type
any character on the console terminal to reboot the sys-
tem. After this is done, return to step 2 above.

NOTE

If the system is 12K or larger, control
will return to the CSI, which prints an
asterisk. No rehoot is necessary, and
the user may proceed with the next
assembly (step 4 above),

Whenever a prompt message for unit 1 occurs, mount the
source cagsette containing the proper file (in
parentheses) on unit 1 write-locked, and type any
keyboard character.

In all command lines, TT: may be specified in place of
LP:; however, several output listings will be extremely
long and the use of the console terminal as the listing
output device is not recommended,

G.2 ASSEMBLY COMMAND LINES

Keyboard Listener (KBL)

=xKBL /P, LPt=1:KBL. 0235

PASS 2

p? see Step 5

CABLDR

* CABLDR/P,LP:=1: CABLDR.B22
PASS 2

a7 see Step 5

r

"

G.2.3 Command String Interpreter (CSI)
*C5l /P»LP:=1:CS5l.014
PASS 2

az see Step 5

G.2.4 CLOD11l
*CLOD11/PsLP:=1:CLOD]11.024

PASS 2
@z see Step 5
P
G.,2.5 RESMON*
*RESMU\I/P:LP:=I:RESMON-B68
PASS 2
az see Step 5
T G.2.6 CBOOT
*CBOOT/P>LP:=1: CBOOT. 287
PASS 2
07 see Step 5
G.2.7 PIP*
—
*PIP/PsLP:=1tPIP. 022
PASS 2
[see Step 5
.
*Requires minimum 12K PAL assembler
=

G.2.8 CSINBF

*«CSINBF/PsLP:=
12 see
1? see
PASS 2

n? sSee
17 see
1? see

G.2,9 EDIT*

tNOBUFF.PAR/P»CSITAC. 832/P

Step 7 (NOBUFF,PAR)

Step 7 {(CSITAC,.032)

Step 5
Step 7 (NOBUFF.PAR)

Step 7 (CSITAC.032)

*EDIT/P,LP:=1:CAPS11.PAR/P,EDIT.023/P

1? see Step 7 (CAPS11.PAR}
17 see Step 7 (EDIT.023)
PASS 2

B? see Step 5

1? see Step 7 (CAPS11.PAR)
1? see Step 7 (EDIT.023)

G.2.10 LINK*

*LINK /P,LP:=1:2
PASS 2
o2 see

c.2.11 CSITAC

*CSITAC/P.LP:=

PASS 2

a? see

*Requires

LINK.23@

Step 5

1: CSI TAC. 232

Step 5

minimum 12K PAL assembler

L

oDT

#0DT /P, LPt=1:0DT.815

PASS 2

B? see

G.2.13 PAL*

«PAL /PsLP:=12 PAL1. 827 /P, PAL2. P2T/P, PAL3.827/P

12 see
12 see
17 see
PASS 2

27 see
1? see
1? see
1? see

Step 5

Step 7
Step 7

Step 7

Step 5
Step 7
Step 7

Step 7

(PAL1.027)
(PAL2.027)

(PAL3.027)

(PAL1.027)
{PAL2.027)

(PAL3.027)

G.2.14 P8SYM (BK PAL Symbol Table)

*P3SYM/PsLPt=1: PBSYM

— PASS 2
B7? see Step 5
G.2,15 P1l25YM (12K PAL Symbol Tahble)
*P125YM/PsLP:=1:P125YM
PASS 2
g7 see Step 5
*Requires minimum 12X PAL assembler
-

G-5

G.2.16 P1l65YM (16K PAL Symbol Table)
2P16SYM/P,LP:=1:P165SYM
PASS 2

a7 see Step 5

o©r

INDEX

Absolute, 5-5 Assigning values to symbols,
binary format, 3-18, E-5 5-8
binary load block
format, E=3 Autodecrement mode, 2-5,
mode, 5-20 5-18
program sections, 6-6 Autoincrement mode, 2-5,
Accessing unstructured data, 2-8, 5-17
2-8 Auxiliary header record,
Address mode syntax, B-2 F=5
modes, 2-7
pointers, 2-5 Base address, 7-2
register display, 1-8 Bits, 1-4
Addressing, 2-4 Blank cassette, 1-5
Addressing modes, 5-16 Blocks, Text, 5-46
absolute, 5-20 Breakpoint status words,
autodecrenent, 5-=18 7-23
autoincrement, 5-17 Breakpoints, 7-20
deferred autodecrement, 5-18 Buffer arrangement,
deferred autocincrement, 5-18 transfer commands, 9-3
deferred index, 5-19 unformatted cassette, 9-7
deferred register, 5-17 Buffer size, 9-=4
deferred relative, 5-21 Building memory
index, 5-=19 configurations, E-11
register, 5-16 Byte count, 9-7
relative, 5-20 Byte count word, 9-12
Addressing using PC, 5-19 Bytes, 1-4, F=2
Altering register contents, Unused, F=5
5=-37
Arithmetic operators, 5-11 CABLDR, E-2, E=3
ASCII, halts, E-4
character codes, A-2 switch register settings, E-4
conversion, 5-12 CAPS-11 loading process, E-7
input and output, 7-19 CAPS~11 memory map, 3-17
Assembler, PAL, 1-2, 5-1 CAPS1l1.LDA, E=6
addressing modes, 5-16 CAPS11.S5YS, E-6
calling and using, 5-1 Cassette, 1-3, F-2
coding techniques, 5-37 Absolute Loader (CABLDR), 3-~18
directives, 5-24, B-9 blank, 1-5
conditional, B-10 Bootstrap (CBOOT), 3-17, E-1
error codes, 5-47 dismounting a, 1-5
error messages, 5-48, C-9 format, 1-4
example listing, 5-46 Loader (CLODl1l), 3-18, E=~2
expressions, 5-10 Monitor, E-6
1/0 specifications, 5-3 mounting a, 1=5
language summary, B-1 OBJ, 1l=2
chject module output, 5-46 removing a, l-6
options, 5~2 Standards, F=1
restarting, 5-3 System, 1=2, 1-5
statements, 5-4 Cassette file I/0 commands, 9-14
symbols, 5-7 CLOSE, 9-18
Assembling the source ENTER, 9-16
program, 5-1 SEEK, 9-14
Assembly, SEEKF, 9-15
command lines, G=2 Cassette I/0 functions, 9-24
dialoque, 5-44 Cassette I/0 primitives, 9-24
instructions, G-1 CBOCT, 3-2, E=-1, E-8
listing, 5-45, 5-46 loader format, E-1, E-2
location counter, 5-12 Character, F=2
Assembly lanquage summary, B-l null, 1-5
instructions, B-3 set, 5-4

terminators, B-1

Index-1

Checksum, 9-12
Clear trailer, F-5
Command and error message
summaries, C=1l
Command input buffer (LEDIT),
4=23
Command mode (EDIT), 4-4
Command String Interpreter
(Cs1), 3~6, 3-138

Command summaries,

Editor, C-4

Monitor, C-1

OoDT, C-16
Comments, 5-6
Communications directory,

6-7

Components,

Hardware, 1-2

Software, 1-2
Condition code operates, B=7
Condition codes, B-3
Conditional directives, B-10
Console,

elements, 1-8

operation, 1l-7

terminal operation, 1-10
Constant register, 7-15
Contiguous relocating load,

E~-4
Control sections,
Named, 6-6

Unamed, 6-6
Control switches,

PDP-11/10, 1=-9
Copying cassettes, 8-=4
Creating a new system

cassette, E-15

CSI options, 3=7
CSYSLD.LDA, E=6
CTLOAD. SYS, E-2

Data record, 1-4, F-2
Data register display, 1-8
Data transfer commands, 9-19
READ, 9-19
WAITR, 9=-22
WRITE, 9-20
Debugging the object
program (see ODT)
Default extensions, 3=5
Deferred,
autodecrement mode, 5-18
autoincrement mode, 5-18
index, 5-19
modes, 2-7
register mode, 5-17
relative mode, 5-21
Device,
assignments, 9-3
conflicts, 9-21
dependent functions, 9-9
9-12
interrupts, 2-3

Directives,
.ASCII, 5-28
.BYTE, 5-28
conditional assembly, 5-30
.END, 5-27
.EOT, 5-26
.EVEN, 5-26
.GLOBL, 5-25
+«LIMIT, 5-30
listing control, 5=30
program sections, 5-25
.RAD5S0, 5-29
.TITLE, 5-24
.WORD, 5=27
Dismounting a cassette, 1-5
bisplay,
Address register, 1-8
Data register, 1-8
bone bit, 9-6
Double huffering, 9-23, F-8

EDIT (Text Editor), 4-1
calling and using, 4-1
character command

properties, 4-8
closing files, 4-14
command arguments, 4-6
command string format, 4-6
command strings, 4-7
command structure, 4-5
command summary, C-4¢
current location

pointer, 4-7
error messages, 4-25, C=7
example of use, 4-27
1/0 specifications, 4-2
input and output

commands, 4-10
key commands, 4-4
line oriented command

properties, 4-8
modes of operation, 4-4
options, 4-2
restarting, 4-3
search commands, 4-16
text modification

commands, 4-18
utility commands, 4-22

Editing the source program
{see EDIT)

Elements of the console,
1-8

EMPTY header, 3-15, 9-16

End of tape, F=5

Entering I/0 information,
3-6

Entry symbol, 5-8

EOF bit, 9-6

EOM bit, 9-6

Error message format, 3-10

Index—-2

£

Error message summaries,
Assembler, C-9
Editor, C=7
Linker' C-l3
Monitor, C=-2
opr, C-19
PIP, C=20
RESMON, C-22

Expressions, 5-10
modes, 5-14
terms, 5-10
Extensions,
Default, 3-5
Filenames and, 3-4

File, 1-4
P creation date, F-5
deletion, 8-3
formats, 3-3
ASCII, 3-3
Binary, 3-3
gap, l1-4, F-2
name, F-3
Sentinel, 1=5
type, F-3
Filenames and extensions,
3-4
Files, sequential, 1-4
' Format,
Cassette, 1-4
control, 5-6
Header record, F-3
Formatted,
ASCII, 9-9
Binary, 9-11
cassette I/0, 9-7
Full standard, F=2
Functicnal organization
{oDT}, 7-20

General assembly
instructions, G-1
Global Symbol Directory
(GSD) , 5~15, 5-46, 6-7
Global symbols, 6-7

Hardware components, 1-2
Header continuation byte,
F-5
Header record, l1-4, F=2, F-3
Auxiliary, F=5
format, F=3

I/0 buffer area, 9=3
Immediate mode, 5-19
Index mode, 2-6, 2-8, 5-19
Input/output,
devices, 3-4
Vs programming, 9-1

Instruction,
capability, 2-9
forms, 5-23
set, 2-4

Instructions,
assembly, G-1
branch, B=7
double operand, B-4
opaeration, B-6
rotate/shift, B-5
single operand, B-4
subroutine call, B=8
subroutine return, B~9

Internal registers, 7-9
Internal symbols, 6-7
Interrupt vectors, 2-4
Interrupts, 2-10

IOT instructions, 9-2
Iteration brackets, 4-9

Keyboard,
differences, A-l
LA30 DECwriter, 1-11
Listener (KBL), 3-18
Monitor loading process,
3-1, E-1
Monitor sections, 3-16

LA30 DECwriter,
keyhoard, 1-11
parallel, 1-12
serial, 1-11
Labels, 5-4
Leader/trailer tape, 1-3
Linker, 6=1
calling and using, 6-2
error message summary, C-13
example of use, 6-13
fatal errors, 6-10
input and output, 6-7
input and output
specifications, 6-5
non-£fatal errors, 6-9
options, 6=2
restarting, 6-5
Linking,
Relocation and, 5-~15
Load map, 6=5, 6-8
Load module, 6-5, 6=~7
Loading unused trap vectors,
5-36
Locking bar, 1-5
Logical operators, 5-11
LS1l line printer operation,
1-12
LS11l operator panel, 1-12

Index-3

Macro buffer (EDIT), 4-23
Mask register, limits, 7-14
Memory block initialization,
7-15
Memory map, CAPS-11, 3-17
Minimal system
configuration, 1-2
Mode,
Autodecrement, 2-5
Autoincrement, 2-5, 2-8
Index, 2-6, 2-8
Radix-50, 7=9
Register, 2-5
Relative, 2-8
Single-instruction, 7-13
Mode (EDIT),
command, 4-4
text, 4-4
Mode byte, 9-4, 9-17

Modes, 9-7
address, 2-7
deferred, 2-7
formatted ASCII, 9-9
formatted binary, 9-11
non-defferred, 2~7
unformatted ASCII, 9-11
unformatted binary, 9-12
Modes of expressions, 5-14
absolute, 5=14
external, 5-14
relocatable, 5-14
Monitor, 1-2
commands, 3-11, C=1
DATE, 3-14
DIRECTORY, 3-14
LOAD, 3-13
RUN, 3=11
SENTINEL, 3-15
START, 3-13
VERSION, 3-16
ZERO, 3-15
error messages, 3-24
loading instructions, 3-1
reconfiguring, E-12
sections, 3-16
CABLDR, 3-18
CBOQT, 3-17
CLODl1l, 3-18
CSI, 3-18
KBL, 3-18
RESMON, 3-17
SYSCOM, 3-18
Mounting a cassette, 1-5
Multi-volume files, P-6

Named control sections, 6-6

Nested device servicing, 2-10

Non-contiguous relocating
load, E-4

Non-data transfer commands,
9=~12
CNTRLO, 9-13
RESET, 9=13
RESTART, 9-13
Non-defferred modes, 2-7
Non~fatal off-line and
write-lock errors, 9-18
Normal load, E-4
Notes on device handlers,
3-23
Null characters, 1=5, 9-12
Numbers, 5-11
decimal, 5-11
octal, 5-11

OBJ cassettes, 1-2, E-=11l
Object module output, 5-46
Object medules, 6-7

~opr, 1-2, 7-1
accessing general
registers, 7-8
accessing internal
registers, 7=8
breakpoints, 7-11
calculating offsets, 7-16
calling and using, 7-1
changing locations, 7-5
closing locations, 7-5
commands and functions,
7-4, C-16
error detection, 7-26
error message summary, C-19
example of use, 7-26
I1/0 specifications, 7-2
mask register, 7-14
opening locations, 7-5
options, 7-2
printout formats, 7-4
priority level, 7-18
program execution, 7-11
relocation register
commands, 7-17
restarting, 7-2
restoring terminal
status, 7-24
searches, 7-14, 7-25
trace trap instruction,
7-21
Operands, 5-6
Operation, Console, 1-7
Operator panel, LS11, 1-12
Operators, 5=5
Arithmetic, 5-11
Logical, 5-11
Option summary,
Assembler, C-8
Linker, C-12
PIP, C-19
Overlay load, 6-4

Index-4

tr

Packing algorithm, 5=29
Page size, 5=7
PAL assembler, (see Assembler)
PDP-11/10 control switches,
1-9
PDP~11/10 programmer's
console, 1-7
Peripheral Interchange
Program, (see PIP)
Permanent device names, 3-4
Permanent symbol table, 5-7
PIC coding, 5-32
PIP, 1~-3
Calling and using, 8-1
Error messages, 8=5, C=20Q
I/0 specifications, 8-2
Options, 8-1
Restarting, 8~5
Pointer relocation commands,
4-14

Position independent modes,
5=32
absolute, 5-33
branches, 5-32
immediate operands, 5-33
relative memory references,
5=32
PRELDR, E=2
Processor stack pointer,
2-4
Processor status register,
2=3
Processor use of stacks,
2-9
Program counter, 2-4, 2-8
Program runaway, 7-23
Program sections,
Absolute, 6-6
Relocatable, 6=-6
Programmer's console
(PDP-11/10), 1=7
Programming considerations,
7=20
Programming the PDP-11, 2-1
Push and pop operations,

Push-down lists, 2-6
QCBOOT, 3=2, E-9

Radix 50 mode, 7~9

Radix 50 terminators, 7-10

Random access of tables,
2-6

Reconfiguring system programs,
E~-13 - E~15

Reconfiquring the Monitor,
E-12

Record,

Data, 1-4

gaps, 1l-4, F=2

Header, 1l-=4

length, F-4, F-6
Recursive subroutines, 5-41
Register Switch, 1-8
Register display,

Address, 1-8

Data, 1-8
Register, 2-4

mede, 2-5, 5-16

symbols, 5-9
Relative branch offset, 7-7
Relative mode, 2-8, 5=20
Relocatable, 5=5

expresgsions, 7-3

forms, 7-3

object modules, 5-15, 7-2

program sections, 6-6
Relocating load, E-4
Relocating pointers, 5=35

Relocation, 7-=2
and linking, 5=-15
bias, 7-2, 7-17
calculators, 7-18
factor, 5-5
registers, 7-3
Relocation Directory (RLD),
5=15, 5-46, 6=7
Removing a cassette, 1-6
Repeat (proceed) count,
7-14
Repetitive executien (EDIT),
4-9
Resident Monitor (RESMON),
1-3, 3-17
communicating with, 9-1
error messages, 9-25, (C-22
example, 9-2, 9-26
non-fatal error codes, 9-5
Restricted cassette
standard, F-6
Rewind button, 1-5

Save buffer (EDIT), 4-23

Sentinel file, 1-5, F=2,
F=5

Sequence number, F-5

Sequential files, l=-4

Serial LA30 DECwriter, 1-11

Setting up the stack
pointer, 5-35

Setting up trap for
interrupt vectors,
5-35

Single buffer transfer on
one device, 9-22

Single~instruction mode,
7~13

Index-5

Software components, l=2
Software support
information, E-1
Special characters and
commands, 3-8
CTRL/C, 3-9
CTRL/0, 3-9
CTRL/P, 3=-10
CTRL/U, 3=10
RUBOUT, 3-10
Stack operations, 2=6
Standard {(Cassette), F-1
Full, F=2
Restricted, F-6
Standard hardware devices,
E-11
Starting a program, 1-10
Statements, 5-4
coments, 5-6
labels, 5-4
operands, 5-6
operators, 5-5
Status byte, 9=5
Status register format, 2-3
Status/error byte, 2-17,
9=-24
Subroutines, 2-9, 5-38
Recursive, 5-41
Summaries,
Command and error message,
c-1
Switch register, 1-8
Symbols, 5-7
permanent, 5=7
register, 5-9
user-defined, 5-7

SYSCOM, 3-17
general locations, 3-19
special locations, 3-20

Systen,

cassette, 1-2, 1-5, 3-1
directory, 3=1

communication (SYSCOM), 3-18
configuration, minimal, 1-2
conventions, 3=3
demonstration, D~-1, D=2
diagram, 2-2
start=up, D-1
structure, 2-1

Tab stops, 3-23 /
Table of breakpoints, 7-11
Table of mode forms and
codes, 5-21
Table of proceed counts,
712
Table of relocation
registers, 7-17
Text blocks, 5=46
Text buffer (EDIT), 4-10,

4-23
Text Editor (see EDIT)
Text mode {(EDIT), 4-4 7

TRA block, 6-8

Transfer mode, 9-4

Transferring files, 8-4

Trap vectors, 5=37

Traps, 2-10 N
Two pass assembler, 5-1

Unamed control sections,
6-6
unformatted,
ASCII, 9-11
Binary, 9-12
Cassette I/0, 9-7
UNIBUS, 2=3
Unused bytes, F=5
User program loading
process, 3-21 ”‘\
User prompting, 9-17
User-defined symbols, 5-7
global, 5-8
internal, 5-8
Using the CAPS-11 Monitor,
3-1

WAITR vs. testing buffer
done bit, 9=22
WRITE, F=7

Write-protect tabs, 1-3 /m\
Writing,
automatic PIC, 5=34
non-automatic PIC, 5-35
position independent
code (PIC), 5-32

Zeroing a cassette, 8-2

Index~6

=

CAPS-11-USER'S GUIDE
DEC-11-OTUGA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should bhe reported on a Scftware
Problem Repcrt (SPR) fcrm.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well=-organized?
Please make suggestions for improvement.

0

£

2

-

| =

12

)

o

5 Is there sufficient documentation on asscciated system programs
: required for use of the software described in this manual? If not,
g what material is missing and where should it be placed?

QL

[

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Neon-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country
If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Eguipment Corporation
Software Communications

P.OC. Box F

Maynard, Mass. 01754

¥

t
L3
T
X
ﬂ‘.
Pond
[]
E o
.
ior

	Front Cover

	Contents

	Preface

	Chapter 1 - The CAPS-11 Programming System

	Chapter 2 - Programming the PDP-11

	Chapter 3 - Using the CAPS-11 Monitor

	Chapter 4 - Editing the Source Program

	Chapter 5 - Assembling the Source Program

	Chapter 6 - Linking Assembled Programs

	Chapter 7 - Debugging the Object Program

	Chapter 8 - Peripheral Interchange Program

	Chapter 9 - Input/Output Programming

	Appendix A - ASCII Character Codes

	Appendix B - Assembly Language Summary

	Appendix C - Command and Error Message Summaries

	Appendix C1 - Keyboard Monitor

	Appendix C2 - Editor

	Appendix C3 - Assembler

	Appendix C4 - Linker

	Appendix C5 - ODT

	Appendix C6 - PIP

	Appendix C7 - RESMON

	Appendix D - System Demonstration

	Appendix D1 - System Start-Up

	Appendix D2 - System Demonstration

	Appendix E - CAPS-11 Software Support Information

	Appendix E1 - CAPS-11 Keyboard Monitor Loading Process

	Appendix E2 - Building Memory Configurations for the CAPS-11 System

	Appendix F - Cassette Standards

	Appendix F1 - Introduction

	Appendix F2 - Definitions

	Appendix F3 - The Full Standard

	Appendix F4 - The Restricted Standard

	Appendix G - CAPS-11 Assembly Instructions

	Index

