ey
BEABBEA88RA088

dlifgitall
-« [fortiron v
language manual

®



PDP-15
- FORTRAN IV LANGUAGE
PROGRAMMER’'S REFERENCE MANUAL

For additional copies, order No. DEC-15-GFWA-D from Program Library, Digital
Equipment Corporation, Maynard, Massachusetts 01754 Price $5.00

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS



Copyright © 1971 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

1st Edition August 1971



CHAPTER1

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3

CONTENTS

BASIC ELEMENTS OF A FORTRAN-IV PROGRAM

The Character Set
Program Structure
Expressing Data Values
Constants

Variables

Expressions

CHAPTER 2 ASSIGNMENT STATEMENTS

2.1
2.2

The Arithmetic Statement
The ASSIGN Statement

CHAPTER 3 CONTROL STATEMENTS

.

W W W W W wwww w
w NN NN
N

3.1
.3.2
3.4

3.4.1
3.4.2

w

The GO TO Statement

The Unconditional GO TO Statement
The Computed GO TO Statement
The Assigned GO TO Statement
The DO Statement

Execution of a DO Range

Nested DO Statements

The CONTINUE Statement

The IF Statement

The Arithmetic IF Statement

The Logical IF Statement
Execution Control

The PAUSE Statement

The STOP Statement

CHAPTER 4 SPECIFICATION STATEMENTS

4.1

4,1.1
4.1.2
4.1.3

Mode Specification
Mode-Declaration Statement
The IMPLICIT Statement
The EXTERNAL Statement

ifi

Page

1-2
1-3
1-5
1-8
1-10

2-1
2-3

3-4



4.2

4.2.
4.2,
4.2.

4.3
4.4

1
2
3

CONTENTS (Cont)

Storage Allocation

The DIMENSION Statement
The COMMON Statement
The EQUIVALENCE Statement
The DATA Statement

Block Data Subprograms

CHAPTER 5 SUBPROGRAM STATEMENTS

5.1

5.1.
5.1.
5.1.

5.2

5.2.
5.2,

5.3

1
2
3

1
2

Functions

Statement Functions
External Functions
DEC Library Functions
Subroutines
Subroutine Definition
Subroutine Calls

Multiple Entries and Returns

CHAPTER 6 DATA TRANSMISSION STATEMENTS

.1

oo O~ O~ 0 8 O O8O0 O O O
W oW W W W W N = =

[T SRR )

—
.

The FORMAT Statement

Statement Syntax

Field Descriptors

Object Time FORMAT Specifications
Data-Directed Input-Output
Input-Output Statements
Input-Output Lists

Sequential Input-Output Statements
Direct~Access Input-Output

The ENCODE/DECODE Statements
Auxiliary Input-Output

Page

4-3
4-3
4-4
4-5
4-7
4-8

5-2
5-2
5-6
5-7
5-7
5-8

5-9

6-2

6-3

6-4

6-16
6-16
6-17
6-18
6-19
6-20
6-23
6-23



CONTENTS (Cont)

APPENDIX A LANGUAGE SUMMARY

APPENDIX B ERROR MESSAGES

B.1 Compiler Error Messages
B.2 OTS Error Messages
B.3 OTS Error Messages in FPP Systems

APPENDIX C  PDP-15 FORTRAN FACILITIES

ILLUSTRATIONS
Figure No. Title
1-1 DEC FORTRAN-IV Coding Form
3-1 Rules for Nested DO Statements
5-1 Main Program Sample
5-2 Subprogram Sample
6-1 Programming Example - Auxiliary 1/O to Disk
TABLES
Table No. Title
1-1 Sequence Rules for FORTRAN Statements
1-2 Modes of Mixed Expressions
6-1 Physical Record Description for Formatted and
Unformatted Records
6-2 Field Descriptor Control Characters
6-3 The READ Statement
6-4 The WRITE Statement
6-5 Arguments for CALL DEFINE
C-1 Versions of the Extended Compiler
C-2 Versions of the OTS Libraries for the Extended Compiler
C-3 Compilers and Libraries for Extended FORTRAN

Distributed with PDP-9/15 Systems

Page

A-1

Page

3-6
5-3
5-4
6-25

Page

1-2
1-12

6-1
6-4
6-19
6-20
6-21
C-1
C-2






PREFACE

This manual describes the elements, syntax and use of the FORTRAN 1V language as implemented for
the PDP-15 computer. Three versions of the PDP-15 compiler are available; their use is governed by
the hardware/software configuration of the system on which FORTRAN is to be run. The most compre-
hensive version of PDP-15 FORTRAN 1V is described in this manual. See Appendix C for overall out-
lines and descriptions, and tabularized descriptions of the differences between the various versions of

the FORTRAN IV compilers and their associated libraries.

All versions of PDP-15 FORTRAN 1V are based on USASI Standard FORTRAN (X3.9-1966); the follow-
ing features were added to the PDP-15 version of FORTRAN 1V:

ENCODE/DECODE Statements, data-directed Input/Output, multiple

entries and returns from subroutines.

double integer constants and variables, part-word notation for Arithmetic
statements;

direct access inpui‘/oufpuf statements.
END and ERR input-output options

octal format descriptors

The following standard features are not available:

complex arithmetic

adjustable arrays (done via subroutine in this version)

One additional difference from the standard is that the blank COMMON and labeled COMMON are

treated the same.

A companion manual, "PDP-15 FORTRAN IV OPERATING ENVIRONMENT", order code DEC-15-
GFZA-D, describes the system software facilities needed to support the various versions of the PDP-15
FORTRAN IV compiler and hardware features which affect the FORTRAN programmer. Included in
this manual are descriptions of the FORTRAN IV Object Time System (OTS) and Science Library.



\
-



CHAPTER 1
BASIC ELEMENTS OF A FORTRAN-IV PROGRAM

A FORTRAN-IV source program is a sequence of symbolic statements which are translated by the
FORTRAN-IV compiler into an object program; that is, a program which may be executed by a comput-
er. A statement, the basic unit of expression in a FORTRAN source program, may represent computer
instructions and program data or may provide the compiler with instruttions required in the franslating
process, such as the size of an array, the number of times a loop is to be executed, or whether the pro-

gram is a subroutine to be called by other programs.

A FORTRAN statement consists of a command portion which characterizes its function and may, in ad-
dition, require arguments. For example, the GO TO statement, which transfers control from one state~-
ment to another, requires an argument specifying the source-program statement which is the target of

the transfer. The five functional categories into which all FORTRAN-IV statements fall are given

below.

Category ' General Function
Assignment Statements Assign values to symbolic representations
Conftrol Statements Govern the sequence in which opera-
tions are performed

Specification Statements Describe data the object program will
process

Subprogram Statements Establish subprograms

Data Transmission Statements Govern the transfer of information be-
tween the computer and peripheral de-
vices (I/0)

The format of each statement and the arguments required for each are described in detail in subsequent

chapters.

1-1



1.1 THE CHARACTER SET

The character set from which FORTRAN statements may be constructed consists of the 26 letters (A-Z),
the 10 digits (0-9), and the following special characters:

[ Left bracket - Minus
] Right bracket * Asterisk
: Colon / Slash
; Semi-colon ( Left parenthesis
# Sharp sign ) Right parenthesis
! Single quote . Comma
Blank . Decimal point
= Equals Dollar sign
+ Plus " Quotes

Other characters may appear only in a text string (Hollerith constant).

1.2 PROGRAM STRUCTURE

A FORTRAN source program's beginning is simply the first statement encountered. Its end must be de-

noted by an END statement consisting of the characters END,

Comments may precede the body of the program or be inserted between statements by means of a com-

ment line which begins with the character C and is followed by text.

The over-all rule for ordering statements is that non-executable statements (no machine code generated)
must precede executable statements. The precise order in which statements may appear is given in

Table 1-1 below.

Table 1-1
Sequence Rules for FORTRAN Statements

Order Statements

—_—

BLOCK DATA; FUNCTION; SUBROUTINE

IMPLICIT

INTEGER; REAL; LOGICAL; DOUBLE PRECISION; DOUBLE INTEGER
DIMENSION

COMMON

EQUIVALENCE; EXTERNAL

DATA

Statement functions

All other

O 00 N o WwWwN




The form in which statements and comments are entered is governed by an 80-character line on a
standard FORTRAN coding form, as shown in Figure 1-1. If the source program is input in card form,

the columns on the coding sheet correspond to card columns. If paper tape is used, the columns refer

to characters.

Each line in a program is organized into the following fields, some of which may be blank:

Field Name Columns Contents

Statement number 1-5 A decimal number from 1-9999 identifying
the statement. May be in any order.

Line continuation field 6 If non-blank, indicates that the statement
portion is a continuation of the preceding
line.

Statement field 7-72 FORTRAN statement or portion thereof.

Identification field 73-80 Ignored by the compiler, filled af the user's
discrefion.

A comment line is indicated by a C in column 1; comment text may be placed anywhere in columns
2-72.

With the exception of the DO statement, which must be on one line, any statement may have as many
continuation lines as desired. Any statement except the Arithmetic statement and the Arithmetic IF
statement may be broken at any point. Continuation rules for these two statements are described in
Chapters 2 and 3, respectively. In general, blanks may be freely imbedded within statements to im-

prove their legibility.

For non-card input, the first character is equivalent to the first column and a line is terminated by a
carriage return. A statement field may begin with the seventh character or may be indicated by a
TAB followed by an alphabetic character. A continuation line may begin with the sixth character or

may be indicated by a TAB followed by a numeric character.

1.3 EXPRESSING DATA VALUES

Program data may be expressed in a variety of ways in @ FORTRAN-IV program. The basic units, con-
stants and variables, represent single values - a constant has the same value throughout program execu-
tion, a variable has whatever value it is currently assigned. New values may be computed from

known values of these units via expressions, which are composed of constants, variables and FORTRAN

operators which indicate the computation to be performed.



wJog Buipo)y AI-NVILY¥OL D3Q |-| S4nbiy

SL01-L 0dd

N ‘ 3 3 ? { g LT T T ‘ 14 K i R i St v A
i i g o iv 3 . e Y 3
& v % - & -3 : " i 7% 5E 70 0 P
i A E TS R 4 o e N . i AL e TR S a0
' o¢ oy e 9 - 3 . B .
R Nt e & :
. X Al > A i T i T 1
B s 3o i oF A ¢ ‘ + gt 3 B I B N M o 3 -
pe 3 R R Y 3 =
: R 3 S84 4 i 3
i : >,
_ £ s y . Hkad s
I 34
A~ IR \ L I8 ¥
: 4 ‘. ittt « ; = .
Y g . 1, Sk e .
=N v i s ’ ¥ 0N g
b N s ’ e ~ L.
> " " . 3 3 H A
RO e i - q-41 b o 4 - 2L XA X
Wamnwhi 514 nL.ﬁ:onﬂwmeuq—wwvw X4 R4 mmﬁmmum_ﬂwruquqzuv_ne VP ITPr6E 8t L qn«wamﬂqun. 9 ZZ ICEC ¥C £ ¢ 1202 61 :.ﬁua_w::ﬂﬁﬁ_qnmn ZI9[S v € 2T
YIBWNN S waswnn
_ 30N3ND3S INAWHLVIS 3| inawsLvls

40

$SLI0 " SSVI ‘QUVNAVIN
dovd _ ‘90D INTIWAINDE TV.LIDIA

_ |

a1va TILIL WVID0¥d NVILDIO4 HAVN JWAVID0Ud

-4



1.3.1 Constants

A constant is, as indicated above, a value which does not change from one execution of a program to
another. Six types of constants, each representing a different PDP-15 internal data format, may appear

in a FORTRAN-IV program. These are: INTEGER, DOUBL'E INTEGER, REAL, DOUBLE-PRECISION,
LOGICAL, and HOLLERITH. The form of each is described below.

INTEGERS - An integer constant represents a single word of PDP-15 storage. Its value may be ex-

pressed in the source program as a decimal or octal number.

A decimal integer consists of one to six decimal digits with no decimal point. A negative quantity is

indicated by a minus sign. A positive quantity may optionally be preceded by a plus sign. All of the
following are legal decimal constants:

+97

0

-2176
576

Leading zeroes are ignored; thus ~0010 is equivalent to -10. The magnitude of the integer must be less
than or equal to 13107110 (i.e., 2]7—1).
An octal integer is indicated by a sharp sign (*) followed by one to six octal integers. The following
are legal octal integers:

t777

#1

#20137

DOUBLE INTEGERS - A double integer represents two words of storage (1 sign bit and 35 bits of magni-

tude) and has a range between -34,359,738,367. _ and +34,359,738,367 The notation D, pre-

ceding an octal integer, indicates that it is doubllg integer, as in: #D7777]7077. Note that an octal
integer value not preceded by D may be assigned to a double integer variable (i.e., DI = #130000).
However, the value of the assigned integer must NOT exceed the maximum size permitted integers
(i.e., 3777778). If an assigned octal integer does exceed the maximum permitted value, its most
significant digits will be truncated before it is assigned to the double integer variable regardless of
the fact that the double integer would accept its original value. Decimal integers whose absolute

values exceed 131071 10 9e taken as double integers. The following are examples of legal double

integers:

#D400000
141520

#Do

#D400000000
400000



REAL CONSTANTS - A real constant is a string of decimal digits with a decimal point, optionally
followed by a decimal exponent. It may be a whole number (i.e., 10.), a fraction (i.e., .10), or a
mixed format number (i.e., 10.10). The programmer may supply any number of digits in a real con-

stant but only the leftmost seven are significant. Thus,

10.111550
and

10.111552

are equivalent.

A plus or minus sign may precede the constant - plus being optional for positive quantities. All of the
following are valid:

325.

0.0

+325.

-9.8

999999.0
999999999.

If a decimal exponent is present, it is indicated by the letter E immediately following the constant.
The decimal point may be omitted if immediately followed by an exponent. The exponent itself, which
immediately follows the E, is an optionally signed one~ or two-digit number indicating the appropriate
power of 10, as in:

5.E-3 (i.e., 0.005)

5.0E3 (i.e., 5000.)
5E2 (i.e., 500.)

The adjusted absolute value of the exponent cannot exceed 75. Thus, the constant .99999E75 is legal,
but 999.999E73 is nof.

A'real constant occupies two words of PDP-15 storage in the following arrangement.

Low order Exponent

mantissa (2's complement)

0 89 17
Sign High order mantissa

0 1 17

The mantissa and its sign are represented in signed magnitude form.



DOUBLE-PRECISION CONSTANTS - A double—precision constant is interpreted like a real constant
but with greater accuracy (nine=digit). It is written as a string of decimal digits, including a decimal
poinf immediately followed by the letter D and a signed decimal exponent no greater than 75, (Plus
is optional.) The field following the D may not be blank but may be zero. For example:

-3.0D0

987.6542D15
32.123D+7

Double-precision constants are stored in three words arranged as follows.

Exponent (2's complement)

0 17
Sign
of High order mantissa
mantissa

0 1 17

Low order mantissa

The mantissa and its sign are represented in signed magnitude form.

LOGICAL CONSTANTS - There are two logical constants - . TRUE., which is stored as 7777778, and
-FALSE., which is stored as 0. Logical quantities may be operated upon both by arithmetic and

logical operators yielding, respectively, arithmetic and logical results.

HOLLERITH CONSTANTS - A Hollerith constant is a string of 1 to 5 characters. They are packed in
7-bit ASCII in two words of storage with the rightmost bit of the second word always zero. A Hollerith
constant may be used in CALL and DATA statements and, if the programmer exercises ;:uufion, in an

Arithmetic statement. There are four forms for writing a Hollerith constant:
(1) nH characters
where n is the number of characters (1 to 5). Examples of this format are:

THA
4HASCD



When the above notation is used, the string is stored as a real constant.
(2) ‘'characters'
Examples of this are:

IAI
'ASCD'

If quotation marks are to be included in the character string itself, this may be indicated by having

two single quotes in sequence, as in:
IAIIIICDI

which stores the string A''CD. This and the following forms of string constants are stored as unsigned
double integers and may be used wherever a double integer may. Double quotes may be used instead

of single quotes.
(3) “characters"
Examples of this form are:
"A BC"
which yields string A BC and
WAM uon npw
which yields string A" "B.
(4) $characters$

Examples are:

$AS
$A$$CDS

where the second example yields the string A$CD.

Blanks within a Hollerith constant are considered as characters. Thus,
IAB|

is a three-character string.

1.3.2 Variables

The term varidble refers to a symbolic name which represents a location in memory and to the values
which are stored there during program execution. A variable name in FORTRAN is a string of from one
to six characters, the first of which must be alphabetic. Thus, ALPHA, MAX, A34, and A are legal
variable names while 2A and MAXIMUM are not.

1-8



The kind of value which may be associated with a given variable name must be specified so that appro-
priate storage is allocated. This specification is referred to as the mode of the variable, where mode

is INTEGER, DOUBLE INTEGER, REAL, DOUBLE PRECISION, or LOGICAL,

The implicit mode assumptions of the compiler are that all variables beginning with the letters I through
N are integers and all others are real. For any modes other than integer and real, the programmer is
responsible for establishing a variable's mode. The programmer may also establish a different set of
mode assumptions via the IMPLICIT statement or explicitly declare a variable's mode via one of the

FORTRAN-IV mode-declaration statements. Chapter 5 describes these statements in detail.
A variable may also name an array, an ordered set of data whose elements are referred to by means
of subscripted variables. A subscripted variable has the form:

V(n)

where n is a list of from one to three expressions which yield positive (non-zero) integer values.

The variable name is, in effect, the name of the entire array. For example, the subscripted variable:
AQ3)

refers fo the third element of a one-dimensional array named A. Arrays in FORTRAN-IV may have up
to three dimensions; consequently, subscripted variables (also referred to as array elements) may have

up to three subscripts as in:
A(1,2,2)

which represents the value located in the first row, second column, and second plane of a three-

dimensional array named A, *

A variable which represents an array must be assigned adequate storage to contain all elements. To en-
sure this, the programmer must provide dimensioning information giving the maximum value each of the

array's subscripts can obtain. This may be done via several of the specification statements described

*Arrays are stored in column order in ascending absolute storage locations. For example, a 2 by 2 by
2 array is stored in the following sequence:

A(1,1,1)
A(2,1,1)
A(1,2,1)
A(2,2,1)
A(1,1,2)
A(2,1,2)
A(1,2,2)
A(2,2,2)



in Chapter 5. Nofte that when an array has been defined to have a certain number of dimensions, all
references to it must contain that number of subscripts. Note also that an array must be of a given

mode; i.e., each element is of the same specified mode.

1.3.3 Expressions

The term expression may broadly refer to the whole range of value descriptions which can be made in
FORTRAN. This includes the primary units discussed so far (constants and variables, function references
discussed in Chapter 5), and combinations which relate several units via FORTRAN operators. The
value of this latter type of expression is, in reality, the result of the computations represented by its

operators.

Two types of compound expression - arithmetic and logical - may be constructed in FORTRAN. Either

type may be enclosed in parentheses and function as a primary unit (or operand) in another expression.

ARITHMETIC EXPRESSIONS

An arithmetic expression is any configuration which yields a numeric value. It may be a single arith-

metic unit or combination of arithmetic operands and the arithmetic operators given below.

Operator Operation

+ Addition (or unary plus)

- Subtraction (or unary minus)
* Multiplication
/ Division

wH Exponentiation

An operand may be a constant, variable, function reference, or a parenthesized expression.

The following are examples of legal arithmetic expressions:

2.71828
XYZ
A+B*C
(A+B)*C

Precedence of Operations

Arithmetic operations are carried out according to the following rules of precedence:

(1) function reference

(2) ** (exponentiation)



(3) unary minus
(4) * (multiplication), / (division)
(5) + (addition), - (subiraction)

At the same precedence level, operations are carried out from left to right. For example, the expres-

sion:

-1 +J/2 %10+ SQRT(A) ** 3
L —

2 @ 1
M
(“4)

is evaluated as follows:

(1) the square root of A is raised to a power of 3;
(2) the value of I is complemented;

(8) Jisdivided by 2 and

(4) the result multiplied by 10.

The remaining operations [(2) + (4) + (1)] are carried out from left to right.

When an expression enclosed in parentheses appears within an expression, it is evaluated before being

used as an operand, thus overriding the rules of precedence. Some examples are:

Regular Precedence With Parentheses
44+2%%2=8 4+2)**2=36
8-4*2=0 (8-4)*2=38
-10+4=-6 -(10+4)=-14
18/2 * 3=27 18/(2*3)=3
-1 %% 2= -] (-1)**2=1

Mode of Expressions

Expressions, like variables, have modes. In the case of an expression, however, the mode determines
its accuracy. When an expression is composed of operands of the same mode, this mode applies to the
entire expression. -For example, an expression consisting of integer constants or variables is in integer
mode, and so on. Different mode operands may also be used to form expressions. All legal combinations

and the resultant mode are given in Table 1-2.



Table 1-2
Modes of Mixed Expressions

A plus sign represents any of the operators (+, -, *, or /).

Expression Mode

I Integer

R+R Real

I+DI

DIHl ) e mmea oo Double integer
DI+DI

R+D

DR ) m e e e e oo - - Double precision
D+D

[##] Integer

R**I or DI

R or } ---------- Real

R**D

D#** or DI

DeR oM N oo Double precision
D¥**D

[**Df

DI** ) o m o m e m e e e - - Double integer
DI**DI

LOGICAL EXPRESSIONS

Logical expressions consist of any configuration which yields a logical value (i.e., .TRUE. or .FALSE.).
This may be a combination of arithmetic expressions and relational operators, a logical constant or
variable, or a combination of logical operands and logical operators.
An expression using relational operators has the form:

A operator B

where A and B are arithmetic expressions and operator is one of those listed below.

Relational Expression Relation
A .LT. B A less than B
A .LE. B A less than or equal to B
A EQ. B A equal to B
A NE. B A not equal to B
A .GT. B A greater than B
A .GE. B A greater than or equal to B

1-12



An expression has the value .TRUE. if the relation expressed is true; otherwise, it has the value .FALSE,

For example, assuming a variable A with the value 10 and a variable B with the value 20:

A _LT. B has the value . TRUE.

while

A .GE. B has the value .FALSE.

The following mode combinations are permitted in a relational expression:

Mode May be Related to
B Integer Integer, double integer
Double integer Double integer, integer
Real Real, double precision
- Double precision Double precision, real

Logical operators can combine logical or integer operands. The operators and their meanings are given
below (T indicates a value of .TRUE. for logical operands and non-zero for integers, F, .FALSE. or

zero).

Examples

Logical Operator Meaning Expression  Result

.NOT, logical negation NOT. T
.NOT. F

.AND. T
.AND. F
LAND. T
.AND. F

OR. T
.OR. F
OR.LT
.OR, F

XOR. T
XOR. F
XOR. T
XOR. F

.AND. logical and

.OR. inclusive or

XOR, exclusive or

mMmmMm——- MmMT-—~ T -——
M——7 M—A—-4—- mMmmm— —-n

Logical expressions are, like arithmetic expressions, evaluated according to precedence rules. These

are:

(1) relationals
— (2) .NOT.
(3) .AND.



(4) .OR.
(5) .XOR.

Thus, T .XOR. F .AND, F yields the value .TRUE.

The arithmetic operands of a relational expression are evaluated before the relation is fested. At the
same level of precedence, operations are carried out from left to right. In addition, logical expres-

sions can be parenthesized, thus overriding precedence. For example:

F .AND. F .XOR. T= .TRUE.
but
F .AND. (F .XOR. T) = .FALSE.

Following .NOT. a compound expression must be parenthesized, as in:

.NOT. (F .AND. T)

which has the value .TRUE.



CHAPTER 2
ASSIGNMENT STATEMENTS

An assignment statement permits the programmer to assign a value to a symbolic name. Two FORTRAN-
IV statements, the Arithmetic statement and the ASSIGN statement, perform this function. In the case
of the Arithmetic statement, the symbolic name identifies a variable or an array element and the value
is a constant data value or the result of a computation. For the ASSIGN statement, the name is a
symbolic address label which may be referred to by a GO TO or arithmetic IF statement (Chapter 3)

and the value is a statement number within the source program. For either statement, the value assigned
to a particular name may be changed by subsequent assignment statements; other statements or expres-

sions which refer to them will automatically operate on the most recent value assigned.

2.1 THE ARITHMETIC STATEMENT

General Form var = value
or
array (i) = value

Where value = any FORTRAN constant or expression

Examples COUNT =1

TABLE (COUNT) = 100
COUNT = COUNT + 1
TABLE (COUNT) = 200

Effect The value to the right of the equal sign is assigned to the
variable or array element fo the left

Note that the equal sign in an Arithmetic statement indicates replacement rather than equivalence;
this permits constructions such as COUNT = COUNT + 1. If an Arithmetic statement requires a con~

tinuation line, the = sign must appear on the first line.

If an expression of one mode is assigned to a variable of another mode, the expression is converted
before assignment. That is, integers may be converted to real, real to double-precision, and so on.
There are, however, situations in which the value obtained will be meaningless. For example, if the
integer variable I is assigned the value of the double~integer variable J, when J = 100, the assignment

will be as expected. When J = 10000000, however, an unpredictable value assignment will result.

2-1



Conversions between logical and integer obey the following convention. Any non-zero integer is

.TRUE. (777777), zero is .FALSE. (000000).
In addition to the basic Arithmetic statement form, the programmer may use a part-wurd notation of
the form:

[m:n]
where m and n are integer constants indicating a range from 0 to 35 (0 <m <n <35). This construction
may optionally follow any variable, array element, or parenthesized expression in the value portion of
an Arithmetic statement (to the right of =) and/or the variable or array element being assigned. In the

former case, the expression will be of type integer if (n-m) <16 and type double integer if (n-m) >17;

its value is bits m through n of the actual value (right adjusted}. For éxample, the statement:
A=#2300[6:11]

assigns A the value 23, and
A=230076:8]

assigns A the value 2. If A were a double integer, the statement
A=12300[0:29]

would assign A the value 23. Note that #2300 is represented internally as 002300.

If this notation is used to the left of the equal sign, it indicates that only bits m through n of the

variable are to be replaced by the value of the right hand side. For example, if the integer variable

IVAR had previously been assigned the octal value 77, the statement:
IVAR[9:111=#1
would make the new value of IVAR the octal integer 177. Also, the statements:

IVAR=100
IVAR[9:11]=I VAR+1

leave the value of IVAR unchanged (i.e., 100). The programmer must be careful not to specify a

double integer range (n > 17) for an integer variable. For example:
A=#D77000000[ 19:35]

yields the single integer value 0.

Note that only the first two words of a double-precision floating variable (the exponent and first-order

mantissa) may be manipulated via this notation.

2-2



2.2 THE ASSIGN STATEMENT

General Form ASSIGN n TO label

Examples ASSIGN 27 TO ITEST |
ASSIGN 10 TO LOOP

Effect The symbolic label (a variable of type integer) represents
the specified statement number in an assigned GO TO or
arithmetic IF statement

The ASSIGN statement provides a symbolic addressing capability for the two control statements men-
tioned above, GO TO and arithmetic IF. The statement number assigned must be that of an executable
statement. Note that the integer variable is a symbolic label only within the context of an ASSIGN
and its associated statements and may function as an integer variable elsewhere in the source program.

Before this variable appears in such an expression, however, it must be redefined by an Arithmetic

statement. For example, the statement:
ASSIGN 20 TO IVAR

does not assign the value 20 to IVAR but the memory location associated with the source-program

statement 20. The sequence:
ASSIGN 20 TO IVAR
IVAR=20
NEWVAR=IVAR+1

is permitted, but IVAR may not be used as a label until redefined by another ASSIGN statement.

2-3






CHAPTER 3
CONTROL STATEMENTS

Statements in a FORTRAN-IV program are normally executed in the sequence in which they appear.
The user may alter this sequence in two basic ways - by invoking a subprogram (Chapter 5) which re-
turns control to the normal sequence after execution, or via one of the control statements described
in this chapter. These are:
a. the GO TO statement, which transfers control to a specified statement, thus
originating a new sequence of execution;

b. the DO statement, which establishes an iterative sequence of statements within
the normal sequence;

c. the IF statement, which specifies conditions for the execution of a statement in
sequence or fransfer to a new sequence; and

d. PAUSE and STOP, which, respectively, interrupt and halt program execution.

3.1 THE GO TO STATEMENT

Three forms of the GO TO statement are described below - unconditional, computed, and assigned.
All of these forms transfer control to a statement in the source program; the difference between them is
the manner in which that statement is specified. Any GO TO statement may appear at any point in

the executable portion of the source program except as the terminal statement of a DO loop (3.2).

3.1.1 The Unconditional GO TO Statement

General Form GO TOn

Where n = the number of an executable statement
Example GO TO 27

Effect Control is iransferred to statement n

The simplest form of GO TO statement, the unconditional, is a direct branch to another location in

the source program. Program execution proceeds from this point in the usual sequence.

3-1



3.1.2 The Computed GO TO Statement

General Form GO TO (n],nz,...,nk),i

Where n = the number of an executable statement
i = an integer variable

Example GOTO (3,17,25,50,66),ITEM

Effect Control is transferred to the statement whose number is the
n;th in the list. If ITEM = 2, control passes to statement
17

A maximum of 64 numbers may be listed in a computed GO TO statement. The value of the integer
variable i must fall within the range from 1 to the number of statement numbers listed. If the value

falls outside of this range, an OTS error statement is generated and control passes to the next statement

in sequence.

3.1.3 The Assigned GO TO Statement

General Form GO TO label
or
GO TO |qbe|,(n.|,n2, - ,nk)
Where label = an integer variable assigned a statement number
value
ny--.n = statement numbers which the ASSIGN state-

ment may legally assign fo label

Examples ASSIGN 13 TO KAPPA
GO TO KAPPA

GO TO KAPPA, (1,13, 100)
GO TO KAPPA, (1,72,100)

Effect Control is transferred to the location specified by label

The assigned GO TO statement permits symbolic addressing of statements and execution-fime modifica-

tion of conirol transfer, for example:

ASSIGN 30.TO LOOP
20GOTO If.OOP

30 ASSIGN 545 TO LOOP
GO TO 20 :

In this sequence, the same statement which branched to statement 30 will next branch to statement 45.

3-2



3.2 THE DO STATEMENT

General Form DO n i=m,, m,,m

. 2’73
DO n i=my,m,
or
DO n i=m1,m2, My
Where n = a statement number

i = an integer variable
My moy,m, = variables or constants

Examples DO 101=2,10,2

(iterations for 1=2,4,6,8,10)
J=1

DO 1,1=5,1,-J
(I=5,4,3,2,1)

DO 21=1,5

(I=1121 31415)

Effect Statements following the DO up to and including state-
ment n are executed repeatedly for values of i starting
with my, incremented (or decremented) by mg until i has
surpassed the limit my. If mg is not present, an incre-
ment of one is assumed.

The series of statements which are executed as the result of a DO statement are called the range

of the DO. The variable i is called the index. The values m,, m,, and m, are, respectively, the

initial, limit, and increment values of the index.

If the increment variable, Ma, is preceded by a minus sign, it is actually a decrement. For a con-
stant m, this is simply something of the form -3. For a variable ma, the value of the variable itself
must be positive and may be preceded by a minus sign. Thus, J=1 and -J as an increment is correct.

J=-1 with J as an increment is invalid.

The initial (m]) and limit (m2) values of a DO statement may be positive, negative, or zero provided
the difference between them is less than 131072. Positive values for m, and m,, may be expressed as
positive integers or as variables assigned positive values. Explicit minus signs, however, may not pre-

cede the integer (constant or variable) given within a DO statement for initial and limit index values.

Negative initial and limit values must be expressed as a variable whose assigned value is negative.

For example, the statements:

DO 101=2, -10, -2
and
DO 10 1=2, -A, -2



are both incorrect since a minus sign is not permitted before the integer constants or variables given
for limit values. The series:

A= -2
DO 101=2,A,-2

is correct,

Loop termination, as indicated in the model, occurs when m, has a value beyond the limit. For a

3

positive increment, this occurs when I is greater than m,,; for a negative increment when I is less than

m,. For example, the loop initiated by: ?
DO 101=1,100,2

will not be executed when I=101. The loop initiated by:
DO 10 1=100,1, -2

will be terminated when 1=0.

1t is the programmer's responsibility to ensure that the limit value specified will ultimately be reached.

J=10

K= 100
M=10
MINUSJ = -J
MINUSK = -K

The statements:

DO 10 I=J,K,-M
DO 10 J=J, MINUSK , M

specify infinite loops which are not detected by the compiler.

The statements:

DO 10 I = MINUSJ,K,M
DO 101 = J, MINUSK , -M

specify finite loops.

The range of a DO may contain any statement with one exception. That is, the terminal statement may
not be a GO TO, RETURN, STOP, PAUSE, or numerical IF statement. A logical IF statement is per-

mitted provided that it does not include any of the statements given above.

3.2.1 Execution of a DO Range
The processing of a simple DO range is shown below.
DO 101=1,10,1

ARRAY (1) = TAB(I*2)
10TAB (I*2) =0



The range of the DO here consists of the two Arithmetic statements, which use the index variable as a
subscript index. The range may have any number of statements and the index variable may be used as
an ordinary variable provided that its value is not changed. The statement I=1*2, for example, would

be illegal within the range given above, but TAB(I)¥I is valid.

The exit from the range of the DO to the next statement in sequence is referred to as the normal exit,
In this case, the value of the index variable becomes undefined. Exit may also be accomplished by
the occurrence of a control statement within the range, leaving the index variable with its current
value available for use as a variable. Control may also be transferred from outside the range of a DO
to any statement within. For example:

DO 20 I1=1,100

101F (TAB(I) .EQ. 0) GO TO 50
20 CONTINUE

50 TAB(I)=TAB(I+1)
GOTO 10

Here, a table is consolidated by replacing a zero entry with the next entry. Control is fransferred out
of the DO loop to move the entry and returned to check for zero. Note that the above example per-
mits branching into the range of a DO which standard FORTRAN does not permit. PDP-15 FORTRAN
considers statement 50 and the following GO TO as the "extended range" of the DO.

3.2.2 Nested DO Statements

When the range of a DO statement contains another DO statement (and its range), it is referred to as
nesting. Nesting may occur fo a depth of 9.% The ranges of nested DO's must not overlap; that is,
the range of an inner DO must be contained entirely within the outer DO statement as shown in Figure

3-1. They may, however, end on the same statement.

Execution of nested DO's proceeds as follows. Each time the outermost DO is executed for one of its
index values, the DO within it is executed for all of its index values. If this range conitains another
DO, that range is executed completely for each of the values of the second-level DO. For example,
using the legal nesting example dbove, when range 1 is executed first for I=1, range 2 is initiated
with K=2 and range 3 is initiated with J=1 and iterated (until J>5) five times. Then range 2 is iterated
with K=3 and range 3 iterated until J>5. This process continues until K>10. That is, range 2 is re-
peated ? times and each of these times, range 3 is repeated five times (a total of 45 times) while I of
range 1 is still equal fo 1. At this point range 1 is repeated for I=2 and the whole procedure recurs -
range 2 is done 9 times, range 3, 45 times. When I >10 for range 1, range 2 will have been performed

90 times and range 3, 450 times.

*This restriction includes any implied DO in an input-output list (Chapter 6).

3-5



Legal Nesting Illegal Nesting

DO 501=1, 10 DO 501=1, 10 ——
DO 20K =2, 10, 1 DO 10'J=2, 10, 1
DO]O.J=1,5:|3 2 | DOZO.K=1,5

10 : 10 :
20 : 20
50 : 50

Figure 3-1 Rules for Nested DO Statements

3.2.3 The CONTINUE Statement

The CONTINUE statement is a dummy statement, which does not generate code or cause any action.

It consists simply of the text:
CONTINUE
The CONTINUE statement may appear anywhere within a FORTRAN program but is especially useful

for terminating DO loops when the last statement would otherwise be one of the illegal terminal state-

ments listed previously. For example:

DO 10 K=START, END

7 PAUSE
10 CONTINUE

Here, the user can interrupt program execution at every iteration of the loop although the PAUSE state-

ment cannot be the terminal statement.

3.3 THE IF STATEMENT

An IF statement causes control to be fransferred or a statement to be executed contingent on the value
of a test expression. Two forms of the IF statement are available - arithmetic and logical. They differ

both in general form as well as in type of expression fested.

3-6



3.3.1 The Arithmetic IF Statement

General Form IF(expr)n] /NysNg

Where expr = an arithmetic or logical expression

n = a statement number or symbolic label established by an
ASSIGN statement

Examples IF(COUNT)10, 20, 30

ASSIGN 20 TO MID
ASSIGN 30 TO FIN
IF(A(1)*B)10, MID, FIN

Effect The parenthesized expression is evaluated. Control is
transferred to:

ny if expr <0
n, if expr =0
na if expr >0

As shown in the model, the Arithmetic IF statement transfers control to one of three statements accord-

ing to the value of the expression given. Thus, if COUNT=3, control in the first example, would be

transferred to statement 30.

If an Arithmetic IF statement requires a continuation line, the line must be broken at a comma.

IF(E)10
10,101,102

will not compile. (The desired result is IF(E)100, 101,102,)

Logical values .TRUE. and .FALSE. have the following decimal values:

a. .TRUE. = -1
b. .FALSE. =0

Since logical values have specific arithmetic values, logical expressions may be used in place of
arithmetic expressions in FORTRAN statements. For example, the statement:
IF (A.GT.B.AND.A.LT.C) 3,4,999

is equivalent to the two statements:

IF (A.GT.B.AND.A.LT.C) GO TO 3
GO TO 4

Note that in the above example the branch to 999 will never be executed. Logical expressions, how-

ever, do not always yield the values 0 or -1; for example, in the statement:

IF 1.XOR.J) 1,2,3



the branch is made to statement:

a. 2ifl=J,
b. 3ifI#J but both have the same sign,

c. 1if the signs of I and J are different.

3.3.2 The Logical IF Statement

General Form IF(expr)s
Where expr = any expression

s = any executable statement except a DO or logical IF
Examples IF(L1 .LE. L2 GO TO 17

IF(LIF(X)3, 5,5

IF(L LAND. (.NOT. L1))A=A+1
IF(I-J)A=A+1

Effect If the expression is .TRUE. (or non-zero), statement s is
executed; if .FALSE. (zero), the statement is ignored

Unless the statement executed as the result of a logical IF statement transfers control (i.e., GO TO),
control continues in the normal sequence with the statement following the IF. For example, in the

statement

IF(LNIF(X)3,5,5
10 A=B

when L1 is .TRUE., the numeric IF is executed and conirol fransferred to statement 3 or 5. When L1

is .FALSE., control passes directly to statement 10,

Non-logical (arithmetic) expressions are permitted within logical IF statements. In such cases, non-
zero values are regarded as being logically .TRUE. and zeros as being logically .FALSE. For example,

the statement:

IF X-3.0)GOTO 5

causes a branch to statement 5 if X # 3.0 (i.e., x -3.0 # 0).

3-8



- 3.4 EXECUTION CONTROL

3.4.1 The PAUSE Statement
General Form PAUSE
or
PAUSE n
Where n = an octal inferger 57777778
Examples PAUSE
PAUSE 100
Effect Execution is suspended and the number, if any, is printed

The PAUSE statement interrupts program execution, but maintains the current state of all values. Exe-
cution may be resumed by typing CTRL P (1P) on the console teletype. The integer n, when supplied,
is printed on the console teletype and may be used to identify which of several PAUSE statements was

encountered.

3.4.2 The STOP Statement

General Form STOP
- or

STOPn

Where n = an octal integer 37777778

Examples STOP
STOP 20

Effect Control returns to the MONITOR after n is printed

—~ A STOP statement is used to signify the logical end of a program. If several occur (the logical end

depending on processing resulfs), they may be numbered to indicafe where the program ended.

For example, the statements:

10 IF (COUNT .GE. 100) STOP 10
50 IF (COUNT .GE. 100) STOP 50

make program termination dependent on the value of the variable count at fwo different points.

3-9






CHAPTER 4
SPECIFICATION STATEMENTS

Specification statements provide the compiler with information regarding the data mode, size, and, if

desired, initial values of variables in the source program. All specification statements must precede

the executable portion of the program (see Table 1-1 in Chapter 1).

Data mode specification is accomplished either explicitly via the statements INTEGER, DOUBLE
INTEGER, REAL, DOUBLE PRECISION, and LOGICAL: or implicitly according to the initial charac-
ter in the variable name. The FORTRAN-IV compiler contains implicit mode assumptions, but the
user may override these via an IMPLICIT statement. In addition, the EXTERNAL statement specifies a

subprogram name which will appear in a subprogram call.

Variable size is implicit in the mode assigned to a scalar variable but must be specified in the case of
arrays so that the compiler can allocate adequate storage space. The most common way of declaring
the size of an array is the DIMENSION statement. The programmer may also control the way in which
memory is allocated via the COMMON and EQUIVALENCE statements.

Initial values may be assigned within a program via the DATA statement. A set of initial values may

also be obtained at run time by using a BLOCK DATA subprogram.

4.1 MODE SPECIFICATION

Any data mode may be specified in a mode-declaration statement as described below. If INTEGER
and REAL are the only data modes used in a program, the programmer need not have any mode-

specification statements since he may use the compiler's implicit mode assumptions.

4-1



4,1.1 Mode~-Declaration Statement

General Form LICIPEIVERRL R

Where m = INTEGER, DOUBLE INTEGER, REAL, DOUBLE
PRECISION, or LOGICAL

a = variable name, array name with dimensions, or func-

tion name
Examples INTEGER A,B,CYZ
LOGICAL TTAB(10,10),T,F
REAL XYZ
Effect Elements in the argument list are declared to be of the

given mode. An array is, in addition, allocated storage
to the dimensions given

A mode-declaration statement overrides any implicit mode assumptions. Thus, the statement:
REAL ITAB,J

overrides the basic compiler assumption that ITAB and J are INTEGER. This rule also applies to any
mode assumption specified in an IMPLICIT statement (4.1.2). An item may be assigned a mode only

once in a given program. Note that any function which has not been assigned a mode in the defini-

tion statement and which does not have an implicit mode must appear in a mode decloration statement.

Note alse that arguments must have the appropriate mode, as in:

DOUBLE PRECISION B,X,DABS,DATAN
B=DATAN(DABS (X))

This declaration ensures the proper working of the external and intrinsic functions (Section 5.1.3)

DATAN and DABS.

4.1.2 The IMPLICIT Statement

General Form IMPLUCIT m, (I])'mZ(IZ)' .. .mn(ln)

Where m = INTEGER, DOUBLE INTEGER, REAL, DOUBLE
PRECISION, or LOGICAL

| = a list of one or more alphabetic characters and/or con-
secutive ranges of alphabetic characters (e.g., A-G)

Examples IMPLICIT REAL (A-E,N,X-Z),INTEGER (F-L)
Effect Establishes a new assumption for mode of non-declared
varicbles

4-2

-



The IMPLICIT statement governs the implicit mode assumptions for a single source program. After the
occurrence of the IMPLICIT statement shown above, for example, all variables beginning with F, G,
H, I, J, K, or L will be assumed INTEGER while those that begin with A, B, C, D, E, N, X, Y, and
Z are assumed REAL. In this case, the compiler will not assume that all letters not specified INTEGER

are REAL. Only those listed as INTEGER are REAL. The initial mode assumption may be stated as:

IMPLICIT REAL(A-N, O-Z),INTEGER(I-N)

4.1.3 The EXTERNAL Statement

General Form EXTERNAL ays8y--.a
W<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>