XVM UNICHANNEL
SOFTWARE MANUAL

DEC-XV-XUSMA-A-D

" VM
OVSTENIS
dlilgliltiall

XVM UNICHANNEL
SOFTWARE MANUAL

DEC-XV-XUSMA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (::) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM TYPESET-11

CONTENTS
Page

"
[

PREFACE

[y

CHAPTER INTRODUCTION

=
I
iy

XVM UNICHANNEL SOFTWARE COMPONENTS

XVM/PIREX

SPOL11

MAC11

ABSL11

UNICHANNEL Support Programs
1 Spooler Disk Area Generation (SPLGEN)
2 Spooler Installation Program (SPLOAD)
3 XVM Spooler Control Program (SPOOL)
4
5

. .
v . e
| UL
QUITWWWWWRONRNRNNDN

.
I R e e N e

.
AT UT Ot s W N+
.

XVM MAC1l1 Control Program (MAC11)

MCLOAD

System Software Modification
UNICHANNEL HARDWARE SYSTEM

Common Memory

Interrupt Link

Peripheral Processor Hardware

111

« .
wN =
[

P b b b e b R e e
.

o e e e S e e
I

N

CHAPTER LOADING AND EXECUTION

[y
I
faiy

INTRODUCTION
LOADING THE SYSTEM
ABSL11
Loading ABSL11l, XVM/PIREX, and XVM/DOS
PERIPHERAL OPERATION
Disk Cartridge
Plotter
Card Reader
Line Printer
ERROR HANDLING
Disk Cartridge Errors
Card Reader Errors
Spooler Errors
TASK CRASHES
UNICHANNEIL: RELATED SOFTWARE COMPONENTS
UC15 Components
XVM/DOS Components
XVM/RSX Components

.« .
N =
I

.
*« .
Hwno=

NMOMDDNNNDNNMNMNNODNNONMMOMODNODNDNDNNDNDNDND
.
OO R AR WWLWWWWNNNDNE

-

.
W
!

NNNNDONNOVDODNNDDORNND DN
I 1
O JN~JOAOUTUT S D WWWN H

.
.
wWN =

CHAPTER

w

SYSTEM DESIGN AND THEORY OF OPERATION--
PIREX

w
I
[

PIREX--PERIPHERAL EXECUTIVE
PIREX-An Overview
PIREX Services
Device Drivers
Software Routines in Background Mode
Unsupported Tasks
Optional LV Support
Optional DL Support

1

.
NN W N

.
[e ol gy Sy
.

WWwwwwwww
.

WWwWwwWwwwww
|

B P P W WP

iii

CONTENTS (Cont)

3.1.8 Power Fail Routine
3.2 PIREX -~ SIMPLIFIED THEORY OF OPERATION
3.2.1 NUL Task
3.2.2 Clock Task
3.2.3 Request Processing
3.2.4 Task Structure
3.2.5 Task Control Block - TCB
3.2.5.1 API Trap Address and Level
3.2.5.2 Function Code
3.2.5.3 Task Code Number
3.2.5.4 Request Event Variable
3.3 SYSTEM TABLES AND LISTS
3.3.1 Active Task List (ATL)
3.3.1.1 ATL Nodes
3.3.1.2 ATL Node Pointer (ATLNP)
3.3.2 Task Request List (TRL)
3.3.3 TRL Listheads (LISTHD)
3.3.4 Clock Request Table (CLTABL)
3.3.5 Device Error Status Table (DEVST)
3.3.6 LEVEL Table
3.3.7 Task Starting Address (TEVADD)
3.3.8 Transfer Vector Table (SEND11)
3.3.9 System Interrupt Vectors
3.3.10 Internal Tables Accessible to All Tasks
3.4 DETAILED THEORY OF OPERATION~-PIREX
3.4.1 Request Procedure
3.4.2 Directive Handling
3.4.3 Logic Flow
3.4.4 Operating Sequence
3.4.5 Software Interrupt
3.4.6 Task Completion
3.5 STOP TASKS
3.6 SOFTWARE DIRECTIVE PROCESSING
3.6.1 Disconnect Task Directive
3.6,2 Connect Task Directive
3.6.3 Core Status Report Directive
3.6.4 Error Status Report Directive
3.6.5 Spooler Status Report Directive
3.6.6 PIREX MOVE Directive
CHAPTER 4 TASK DEVELOPMENT
4,1 INTRODUCTION
4,2 PRIORITY LEVEL DETERMINATION
4.2.1 Device Priorities
4.2,2 Background Task Priorities
4.3 TCB FORMAT AND LOCATION
4.4 TASK CODE NUMBER DETERMINATION
4.5 UPDATING LISTS AND TABLES
4.5.1 Temporary Task Installation - Existing

Spare Entry

iv

ue’
[o)]
Q
0]

W ww
[T I e
HEO®OOIIOUOU U

WWWWwwWwwwwwww

CONTENTS (Cont)

4.5.2 Permanent Task Installation - Existing
Spare Entry

4.5.3 Temporary Task - New Entry

4.5.4 Permanent Task Installation - New Entry

4.6 CONSTRUCTING DEVICE HANDLERS

4.6.1 Constructing a XVM/DOS UNICHANNEL

Device Handler

Initialization

«INIT Function

Request Transmission

Interrupt Section

.READ and .WRITE Requests

.CLOSE Function

PDP-11 Requesting Task

UNICHANNEL Device Handlers for XVM/RSX

Definition of Constants

Initialization

Requests

ABORT Requests

Interrupts

READ and WRITE Requests
BUILDING A XVM/PIREX DEVICE DRIVER

General Layout

Task Program Code

Code Sections

Task Entry - Initialization

Interrupt Processing

Exit Techniques

Timed Wakeup

Assembly and Testing

Assembly and Loading

Testing

.
Oy U1 W N =

WWWWWWWwNFRREPE -

. e
D Y .
.
UNdwrn P

.
BARBRWNNNDND N

.
.
BN

Pl I S S - S N S N N SO SO SO N S N O N N N

NNNNANNNNNNNOOOAOOOOONO OGO

. .
N =

CHAPTER

5]

SPOOLER DESIGN AND THEORY OF OPERATION

INTRODUCTION
OVERVIEW
SPOOLER
XVM UNICHANNEL Spooler
SPOOLER DESIGN
SPOOLER COMPONENTS
Request Dispatcher
Directive Processing Routines
Task Call Service Routines
Device Interrupt Dispatcher
Device Interrupt Service Routines
Utility Routines
Buffers, TABLE, BITMAP, TCBs
THEORY OF OPERATION
SPOOLER Startup
LP SPOOLING

® & & s e v e e ® s »
.
[N I

N W=

(G0, W3, I N O O N N R E SR SR S
. .
N =

Ui uTuoug o,

Ut uTa o v s ;
WO UTUTD DWW WWNRN

CONTENTS (Cont)

Page
5.5.3 LP Despooling 5-32
5.5.4 SPOOLER Shutdown 5-36
CHAPTER 6 SPOOLER TASK DEVELOPMENT 6-1
6.1 INTRODUCTION 6-1
6.1.1 Call Service Routine 6-2
6.1.2 Interrupt Service Routine 6-3
6.1.3 Code to Handle the Disk Read/Write 6-3
Operations
6.1.4 Routine to Setup TCB and Issue Request 6-3
6.1.5 TCB 6-4
6.1.6 Initialization in the BEGIN Routine 6-~4
6.1.7 Cleanup in the END Routine 6-4
6.1.8 Updating the Request Dispatcher 6-5
6.1.9 Updating the Device Interrupt Dispatcher 6-5
6.1.10 Updating TABLE 6-5
6.1.11 Updating the Central Address TABLE 6-5
6.1.12 Update DEVCNT and DEVSPP 6-6
6.1.13 Updating the FINDBK Routine 6-6
6.2 ASSEMBLING THE SPOOLER 6-6
APPENDIX A ABBREVIATIONS A-1
APPENDIX B CURRENTLY IMPLEMENTED TCBs B-1
B.1 STOP TASK (ST) B-2
B.2 SOFTWARE DIRECTIVE TASK (SD) B-3
B.3 DISK DRIVER TASK (RK) B-3
B.4 LINE PRINTER DRIVER TASK (LP) B-5
B.5 CARD READER DRIVER TASK (CD) B-7
B.6 PLOTTER DRIVER TASK (XY) B-9
APPENDIX C UC15 RELATED ERROR MESSAGES c-1
GLOSSARY GLOSSARY-1
INDEX INDEX~-1

vi

Figure

Table

QY U1 U1 Ut B W
UL
HWwNhRWNORP

FIGURES

UNICHANNEL Hardware System

Memory Map of a UNICHANNEL System
UNICHANNEL System

Basic Flow Chart of XVM/PDP-11 Request
Processing

Task Format

Detailed Flow Chart of XVM/PDP-11 Request
Processing

Scan of Active Task List (ATL)

Context Switch or Save General Purpose
Registers RO-R5

Send Hardware Interrupt to XVM/Software
Interrupt to PDP-11

Dequeue Node From Task's Deque

XVM LP11 DOS Handler

XVM CR11 XVM/RSX Handler

UNICHANNEL LP Driver

UNICHANNEL Spooler Components

Task Call Service Routine

Device Interrupt Servicing Logic (For LP)
SPOOLER Schematic

TABLE

Common Memory Sizes

vii

Page

1-4

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM
manuals are referenced by title only. Refer to this list for the
DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL
MACll XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

ix

DEC-XV-0OBUAA-A-D
DEC-XV-UCHNA~A~-D
DEC-XV-UDDTA-A-D
DEC-XV-UETUA-A-D
DEC-XV-UTRNA-A-D
DEC-XV-LFLGA-A~D
DEC-XV-LF4MA-A-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC-XV-LMALA-A-D
DEC-XV-UMTUA-A-D
DEC-XV-UPUMA-A-D
DEC-XV-UPPUA-A-D
DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D
DEC-XV~-GVTAA-A~D
DEC-XV-ODKBA-A-D
DEC-XV-ODGIA-A~-D

DEC-XV-ODSAA-A~D
DEC-XV-ODMAA-A-D
DEC-XV-ODSIA-A-D
DEC-XV-IRSMA-A~D
DEC~XV-XUSMA-A-D

PREFACE

This manual describes the XVM UNICHANNEL (UNICHANNEL) Software System
and its primary component PIREX, the peripheral processor executive.

No attempt is made in this document to describe the various UNICHANNEL
hardware instructions; those are explained in the UNICHANNEL-15 SYS-
tem Maintenance Manual. However, examples of instruction sequences
will be used when necessary to clarify programming conventions or
illustrate important aspects of the UNICHANNEL Software System.

It is recommended that the reader have a thorough understanding of the
UNICHANNEL hardware components before attempting to proceed with this
manual. The user who plans to use the UNICHANNEI, Software System in
conjunction with some operating system on the XVM, and not modify

it, should gain a thorough understanding of Chapter 1 of this manual.
Users who wish to modify the UNICHANNEL XVM Software System should
read the UNICHANNEL XVM System Maintenance Manual. 1In addition, a
knowledge of PDP-11 and its assembly language is necessary before at-
tempting UNICHANNEL system modification. '

A Glossary is included following the appendices, and should be used to
clarify terms not familiar to the reader. Program flow charts are
also included in this manual to aid the user in understanding the
logic flow.

The following documents also pertain to the UNICHANNEL System:

MACll XVM Assembler Language Manual
XVM/DOS Users Manual

XVM/DOS System Manual

XVM UNICHANNEL Software Manual
Instruction List for the PDP-15

XVM Systems Reference Manual

XVM/DOS V1A System Installation Guide
RK1ll-E Controller Manual DEC-11-HRKA-B-D

xXi

CHAPTER 1

INTRODUCTION

1.1 XVM UNICHANNEL SOFTWARE COMPONENTS

The XVM UNICHANNEL Software System consists of the following four
components:

1. XVM/PIREX

2., SPOL1ll
3. Macll
4. ABSL1l1

1.1.1 XVM/PIREX

XVM/PIREX (peripheral executive), a component of the XVM UNICHANNEL
(UC15) Software System, is described in Chapters 3 and 4 of this man-
ual. XVM/PIREX (PIREX) is a multiprogramming peripheral processor
executive executed by the PDP-11. It is designed to accept any number
"of requests from programs on the DIGITAL XVM (XVM) or PDP-11 and pro-
cess them on a priority basis while processing other tasks concurrently
{(e.g., spooling other I/0 requests). PIREX services all input/output
requests from the XVM in parallel on a controlled priority basis.
Requests to busy routines (tasks) are automatically entered (queued)
onto a waiting list and processed whenever the task in reference is
free. In a background environment, PIREX is also capable of sup-
porting up to four priority-driven software tasks initiated by the

XVM or the PDP-11.

1l.1.2 spoLll

Spooling is a method by which data to and from slow peripherals is
buffered on an RK05 disk. Spooling allows the XVM to access and out-
put data at high speed, freeing more of its time to do computation.
Programs that do a great deal of I/0, especially printing and plotting,
are not required to be core resident to complete the entire job. This
frees the computer to quickly advance to more jobs, dramatically in-
creasing the throughput of the entire system. The SPOL1l task per-

1-1

Introduction

mits simultaneous spooling of line printer and plotter output, and
card reader input. The capacity of the spooler is user-defined with
a possible maximum of over 1,800,000 characters allowed.

1.1.3 MACll

MACll is a special version of the standard MACRO-11 assembler available
on the traditional PDP-1l1 computer system. This program is executed as
a task under the PIREX Executive. It is used to conditionally-assemble
various components of the UNICHANNEL Software System. Since this as-—
sembler is a subset of MACRO-1l, programs assembled under MACRO-11, will
not necessarily assemble under MACll. 1In addition, programs written

and assembled under MACLl will not necessarily operate correctly on
other PDP-11 systems. MACll produces assembly listings and absolute
binary paper tapes as outputs. Detailed information concerning MAC1ll
can be found in the MACll XVM Assembler Language Manual.

1l.1.4 ABSIL11

ABSL1l is a XVM Hardware Read In Mode (HRM) paper tape program used
to bootstrap-load the UNICHANNEL peripheral processor with MAC1ll-
generated absolute binary paper tapes. While primarily designed to
load the PIREX executive into the PDP-11 memory, ABSL1l may be used
to load any absolute program into the PDP-11 and optionally start it.
Additional information on ABSL1l may be found in Chapter 2 of this
manual.

1.1.5 UNICHANNEL Support Programs

1.1.5.1 Spooler Disk Area Generation (SPLGEN) - SPLGEN allows the user
to dynamically create or alter the RK disk area used by the UNICHANNEL
spooler on any RK disk unit (0 through 7).

1.1.5.2 Spooler Installation Program (SPLOAD) - SPLOAD allows the user
to install, on the system disk, the SPOL1ll paper tape produced by
MAcll .

1.1.5.3 XVM Spooler Control Program (SPOOL) - SPOOL (SPOL15) is used
to initiate or terminate UNICHANNEL spooling using any RK disk unit
which has been previously prepared for spooling by SPLGEN.

Introduction

1.1.5.4 XVM MAC1l1l Control Program (MAC1ll) - MACll (MACINT) is used
to initiate, perform Input/Output for, and terminate the MACl1ll assem-
bler.

1.1.5.5 MCLOAD - MCLOAD allows the user to install on the system disk,
the MACll paper tape produced as a part of the XVM/DOS build process.

1.1.6 System Software Modification

The complete UNICHANNEL Software System may be modified or expanded by
the user when running under XVM/DOS or XVM/RSX programming systems. A
common editor, called EDIT, allows source changes to the XVM or

PDP-11 software. MACRO XVM, the MACRO XVM Assembler, and MACll, a
PDP-11 MACRO Assembler allow new object code to be generated. Both
the MACRO XVM and MACll assemblers are powerful MACRO assemblers that
facilitate easy code generation and source readability.

1.2 UNICHANNEL HARDWARE SYSTEM

The UNICHANNEL hardware (see Figure 1-1) consists of a PDP-11 mini-
computer used as an intelligent peripheral controller for the larger
XVM main computer. The XVM functions as the master processor by
initiating and defining tasks while the PDP-11 peripheral processor
functions as a slave in carrying out these tasks. 1In order to effec-
tively operate, with a minimum of interference with the master pro-
cessor, the peripheral processor uses its own local memory of between
8,192 and 12,288 16-bit words. Since peripheral control requires only
a fraction of the peripheral processor resources, the remainder of the
processor's resources can be used for parallel processing of back-
ground tasks.

1.2,1 Common Memory

Common memory is that memory directly accessible to both the master

processor - the XVM, and the peripheral processor - the PDP-11. Thus
common memory occupies the upper portion of the PDP-11 address space
and at the same time the lower portion of the XVM address space. The
UNICHANNEL System allows any Non-Processor Request device on the UNI-
BUS to access XVM memory so that data can be transferred between I/0

devices and common memory.

Introduction

XVM

170 BUS

UP TO 128K
CARTRIDGE CORE MEMORY
DISK
XVM
UNIBUS XVM MEMORY BUS COMPUTER
| INTERRUPT
LINK
B —
PDP- |1 PDP-I1
CORE MEMORY
8K OR 12K COMPUTER
Figure 1-1

UNICHANNEL Hardware System

The use of common memory allows ease of data transfer between XVM

memory and secondary storage (disk, magnetic
peripheral processor can access a maximum of 28K of memory.
shows the amount of Common memory accessible

with a given amount of Local memory.

Table 1-1

tape,

Common Memory Sizes

etc.

).

PDP-11 LOCAL

COMMON MEMORY

MEMORY SIZE SIZE
8K 20K
12K 16K

The PDP-11
Table 1-1

to a PDP-11 processor

The UNIBUS can address the combined XVM/PDP-11 memory, which can
For instance, the RK(05 and its disk con-

extend to a maximum of 124K,

troller can transfer information to or from a location outside of the

common memory region.,

Figure 1-2 outlines a typical memory map of the

XVM and PDP-11, illustrating the common shared memory address space

and the PDP-11 local memory.

Introduction

‘ 128K W
NOT ACCESSIBLE BY UNIBUS
128K 116-124K
e 7///////
UNIBUS DEVICE | 55444452222222
ADDRESSES ‘ﬁfffffgggfgff
124K /ﬁ 7 112-12¢K
18 BIT
MEMORY
ACCESSIBLE BY ORY SSIBLE BY
UNIBUS NPR < ? MEMORY ACCESSIBLE B
DEVICES XVM AND XVM I/O
. 28K 16-24K
ACCESSIBLE BY__| \ J
PDP-11 -1k g
"LOCAL PDP-11" - ;;Mgég NOT ACCESSIBLE BY XVM
MEMORY OR XVM I/0
\. § 3
Figure 1-2

Memory Map of a UNICHANNEL System

1.2.2 Interrupt Link

The XVM central processor and the peripheral processor communicate with
each other through device interfaces. When the XVM initiates a new
task, it interrupts the peripheral processor with a message. The mes-
sage is designated as a Task Control Block Pointer (TCBP) and points

to a table (Task Control Block) in common memory where the task is
defined. The peripheral processor performs the task and can signify
its completion by sending an optional interrupt back to the XVM.

1.2.3 Peripheral Processor Hardware

The UNICHANNEL System in its standard configuration consists of the
following equipment (Figure 1-3):

Introduction

UPTO 128K OF I8 BIT
MEMORY

___________ @

MXI15-8

<:T ‘ UNIBUS- i8

POP-II I
PERIPHERALS

UP TO 12K OF PDP-II
16 BIT "LLOCAL" cPy
MEMORY

{3

XVM COMPUTER

[omie K=

ORII-C

DRI5-C; CPU 170

PROCESSOR

|
|
I -
|
!
!
MEMORY BUS
|
|
!
!
I
|
|
|
|

XVM 170 BUS

XVM
PERIPHERALS

i

Figure 1-3

UNICHANNEL System

e PDP-11 Peripheral Processor

e DR15-C Device Interface

e Two DR11-C Device Interfaces

e XM15 Memory Bus Multiplexer

e 8192 or 12288 Words of 16-Bit ILocal Memory

The PDP-11, which functions as the peripheral processor, can itself
only process l6-bit words but controls peripherals that can process

18-bit words to provide compatibility with the XVM.

The DR15-C and

the two DR11-C Device Interfaces provide the communication facility

between the XVM and the PDP-11.

The XVM can interrupt the PDP-11 and

send a data word (TCBP) to the PDP-11; this interrupts the PDP-11 at

priority level 7 (the highest priority
location 3108. The PDP-11, serving as

level) and causes a trap thru
a peripheral processor, can

interrupt the XVM to indicate an error condition or job completion at

any one of 128 API vector locations at

any one of four API priorities.l

The XM15 Memory Bus Multiplexer functions as a memory bus switch to
allow either the XVM or the PDP-11 to communicate with the common
memory. The XM15 also provides the PDP-11 with the capability of
performing byte instructions which reference XVM memory .

1This applies to systems with the API option - systems without API can

use four skip instructions, correspondin

levels, to determine the nature of the interrupt.

1-6

g to the four hardware priority

CHAPTER 2
LOADING AND EXECUTION

2.1 INTRODUCTION

This chapter explains how to get the DEC-supplied XVM UNICHANNEL Soft-
ware System up and running. In addition, a list of the UNICHANNEL
software components used in the various XVM monitor systems is included.
For information on how to tailor the system to a specific configuration,
see the XVM/DOS System Installation Guide.

2.2 LOADING THE SYSTEM

The UNICHANNEL system is activated by using ABSL1l to load the PIREX
executive into the PDP-11 UNICHANNEL local memory. XVM/DOS is then
bootstrapped and the system is ready to:

1. Continue running under XVM/DOS
2. Begin execution of BOSS XVM

3. Begin execution of XVM/RSX
2.2,1 ABSLl1

ABSL1l is an XVM absolute binary paper tape program which is read into
the XVM at location 177008 via the Hardware Read In Mode (HRM) on the
XVM. It is used to load PDP-11 absolute binary paper tape on to the
PDP-11. This self starting program is written in MACRO XVM and octal.
(The PDP-11 code is written in octal and assembled with MACRO XVM.,)

Load ABSL11l from the XVM High Speed Reader. XVM will then halt. Start
the PDP-11 from its console switches at 140000. Note that the previous
(DOS V3A) start addresses for ABSLl1l can also be used. Once the

PDP-11 is running, load the PDP-11 tape into the XVM High Speed Reader.
Depress the Continue Switch on the XVM, and the paper tape will read
in. Each data frame from the paper tape is transferred into the PDP-11
as soon as it is read. At the end of the tape, XVM will halt with the
AC register equal to zero. If the paper tape has a start address, the

Loading and Execution

PDP-11 will begin execution at that address. If the paper tape does
not have a start address, the PDP-11 will halt. To load another tape,
place it in the XVM High Speed Reader, and continue both machines.

Checksum errors are detected by the XVM and result in a halt with all
1's in the AC register. The checksum error may be ignored by depres-
sing the CONTINUE switch on the XVM.

2.2.2 Loading ABSL1l, XVM/PIREX, and XVM/DOS

The following is a step-by-step description of how ABSL11, XVM/PIREX,
and XVM/DOS are loaded.

1. Place the ABSL1l paper tape into the XVM paper tape reader.

The paper tape reader ON/OFF switch must be in the ON position.
2. Verify that the RK05 Digk Cartridge is loaded into drive and:

a. The LOAD/RUN switch is in the RUN position.

b. The write ENABLE/PROTECT switch is in the ENABLE position.
3. Press the HALT switch on the PDP-11 UNICHANNEL console.

4. On the XVM console, set the address register switches to
17700 (octal), then press STOP and RESET simultaneously.

5. On the XVM console, press READ IN. The ABSL1l paper tape
should read in.

6. When the paper tape reader stops, observe the XVM accumulator
(AC) using the proper setting of the rotary register selector
and register select switch on the XVM console.

a. If the AC is 0, proceed to step 7.

b. If the AC is not 0, retry starting at step 1. (If this
fails consistently, there is either a bad ABSL11 paper
tape or a hardware problem.)

7. On the PDP-11 UNICHANNEL console, load the starting address
140000 for the PDP-11 portion of ABSL1l into the switch
registers:

Then press the PDP~11 LOAD-ADR switch
8. On the PDP-11 UNICHANNEL console, raise the HALT/ENABLE
switch to the ENABLE position and then press the START switch.
The PDP-11 RUN light should now be on.

9. Remove the ABSL1l paper tape from the reader and place the
PIREX paper tape into it.

10. On the XVM console, press the CONTINUE switch. PIREX paper
tape should read in.

Loading and Execution

11. Remove the PIREX paper tape and verify that the bit 0 and RUN
lights on the PDP-11 UNICHANNEL console are lit. This is an
indication that PIREX is running.

12. Load the XVM/DOS Bootstrap tape (hardware read in mode tape)
into the Paper Tape Reader.

13. Set Address Switches on the XVM Console to
a. 776378 for a 32K or more XVM
b. 576378 for a 24K XVM
14. On the XVM Console, press simultaneously STOP and RESET.

15. On the XVM Console, press the READ IN switch. The XVM/DOS
Bootstrap tape should read in.

16. XVM/DOS should announce itself. If not, check that the con-
sole terminal is powered up, is ONLINE and not out of paper.
Also check that the correct disk cartridge was loaded into
RK unit 0.

2.3 PERIPHERAL OPERATION
2.3.1 Disk Cartridge

On the front of the disk cartridge unit there are two (optionally a
third, ON/OFF) toggle switches, RUN/LOAD, and WRITE/PROT. To load

the disk, press ON (if present) and LOAD. Pull the door open. Pick
up the cartridge by the molded hand-grip, metal side down, horizontal,
and slide gently into the path between the wire guides., Shut the door.
Put the LOAD/RUN switch into the RUN position., 1In about 10 seconds,
the two lights, RDY and ON CYL will come on, indicating that the cart-
ridge is ready. To unload the disk, place the toggle switch on LOAD.
Wait for about 30 seconds until the LOAD light is on. At this time,
the drive will release the cartridge with a noticeable'click', only
then open the door and pull the cartridge out.

WARNING

Do not turn off the drive while unloading
(if drive has an OFF-ON toggle).

2.3.2 Plotter
Unlike the XY311, the XY11l does not have an offline switch. In order

to be able to indicate the XY1l plotter off-line condition, provision
is made in the software through the PDP-11 console switches. By

Loading and Execution

setting bit '2' of the console data/address switches in the up/on posi-
tion ('l' state) the plotter can be put in the off-line mode. This is
made possible by the plotter device driver task in PIREX, which moni-
tors this bit before initiating each plotter I/O requests. Once the
plotter problem condition (e.g., out of paper) has been corrected,
plotting will continue automatically when bit '2' of the console
switches is reset to zero (down position).

The user is provided with the capability of halting the output on the
plotter at the end of current file in the spooled mode. This is done
through bit '3' of the PDP-11 console switches. By setting bit '3' of
the console data/address switches in the up/on position ('l' state)
output on the plotter can be halted at the end of current file. The
plotter driver task in PIREX provides this facility by monitoring this
bit before initiating each plotter I/O requests. After performing the
necessary operations on the plotter, output can be resumed by setting
bit '3' of the console switch in the down/off position ('0' state).

2.3.3 Card Reader

For the purposes of spooling, a card with ALT MODE, ALT MODE in columns
1 and 2 is used as an end-of-deck card. The handler throws away such
cards, continuing on to the next card, so that the XVM program using
the handler never sees this card. This card is used to force data

from a partially filled internal spooler buffer onto the disk where

it can be despooled to the XVM.

2.3.4 Line Printer

Output to the Line Printer can be halted at the end of current file in
the spooled mode. This is done through bit 'l' of the PDP-1ll1l console
switches. By setting bit 'l' of the console data/address switches in
the up/on position ('l' state), outputs on the line printer can be
halted at the end of current file. The Line Printer driver task in
PIREX provides this facility by monitoring this bit before indicating
completion of ,CLOSE I/0 request processing. After performing the
necessary operations on the line printer, output can be resumed by
setting bit 'l' of the console switch in the down/off position ('1l!
state) .

Loading and Execution

2.4 ERROR HANDLING

Within the PIREX system, the device drivers on the PDP-11 side handle
errors by placing error condition indicators in a table in PIREX. On
the XVM side, a "poller" (part of the resident monitor of the operating
system) periodically searches the table to see if any error messages
are to be printed. In almost all cases the recovery is automatic when
the error condition is rectified. See Appendix C for a list of UClS
related error messages.

2.4.1 Disk Cartridge Errors

Disk cartridges must be positioned properly during loading operations.
Improper positioning of the cartridge can result in a drive not ready
condition.

This condition can be eliminated in most instances by unloading the
cartridge, repositioning it properly and reloading the cartridge.

The above operations should be repeated a few times before reporting
the problem to your field service representative. Do not force the
cartridge into or from position during the loading or unloading
operation.

2.4.2 Card Reader Errors

The system divides card reader errors into two groups: hardware and
software. A hardware error is a hardware read error (pick check, card
jam, etc.) or an illegal punch combination. A software error is a
supply error (hopper empty, stacker full) or an off-line condition.

For all hardware errors, the card causing the error will be on the top
of the output stack. With most hardware errors, the card reader will
stop, and a requisite light (i.e., pick check) will light on the
reader. Remove the card, repair or replace it, and put it on the

front of the input stack. Press the RESET button. The driver receives
an interrupt when the device becomes ready again and will restart
automatically.

For software errors, the card in the output hopper has already been
read. It is merely necessary to fix the supply error and press the
RESET button. Note that the card reader can be stopped by pressing
the OFF-LINE button. To restart, press the RESET button.

2-5

Loading and Execution

Illegal punch combination (IOPSUC CDU 72) and card column lost (IOPSUC
CDU 74) are exceptions to all other errors because in these cases
alone, the card reader will stop, remain on line, and no diagnostic
light will be 1lit. The card causing the error will be in the top of
the output hopper. (Mangled cards may cause an illegal punch combina-
tion error.) Press the OFF-LINE button, repair or replace the faulty
card, put it on the front of the input stack, and press the RESET
button to restart.

2.4.3 Spooler Errors

During spooling operations, any unrecoverable disk error will result
in the automatic termination of SPOOLinq. Unrecoverable disk errors
include:

The attempt by the spooler to read/write a bad block on
the disk cartridge.

Setting the disk cartridge off line while SPOOLing is
enabled. (This is detected even if no Input/Output to the
disk cartridge is underway.)

The spooler is disconnected from PIREX upon the occurence of either
of the above errors. The user may restart the spooler by issuing the
XVM/DOS "SPOOL" command.

2.5 TASK CRASHES

During program development under PIREX on the PDP-11, the task under
development may crash. Such crashes may not be apparent unless the
PDP-11 halts, because PIREX keeps both the RUN light and bit 0 lit as
if no problem existed.

Loading and Execution

2.6

2.6.1 UCl5 Components

UNICHANNEL RELATED SOFTWARE COMPONENTS

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
PIREX Executive PIREX XXX PIREX paper tape
SPOOLER SPOL11l XXX SPOOL ***

PDP-11 Absolute Loader|ABSL1l XXX * ABSL1l paper tape
MACll Assembler Special DOS-11 Tape** MACL1 #***

2.6.2 XVM/DOS Components

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
XVM SPOOLER Component SPOL15 XXX SPOOL *%**
SPOOLER Disk Area SPLGEN XXX SPLGEN BIN
Allocation
SPOOLER Image Loader SPLIMG XXX SPLOAD BIN
MACll XVM Component MACINT XXX MACINT ABS
MAC11l Image Loader MACIMG XXX MCLOAD BIN
DOS Resident Monitor RESMON XXX RESMON **%*%*
DOS Non-Resident Monitor DOSNRM XXX DOS15 **#%*
NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
XV.4 LPll/LSll/LVll LPU. XXX LPA. BIN
Line Printer Handler
XVM XY11/XY31l Plotter XYU. XXX XYA. BIN
Handler
XVM CR1l1l Card Reader CD.DOS XXX CDB. BIN *%**%*
Handler

*

ABSL11 requires a special assembler, that is not available as a
supported product. Assembly of ABSL11 with the standard MACRO
XVM Assembler produces a paper tape with a load address of 17720.

* %
The MACll source is a PDP-11 DEC tape that must be assembled and
linked under DOS/BATCH-1l. This tape is not available as a part of
the XVM/DOS kit.

* %
SPOL11l and MACll are combinations of XVM and PDP-11 code segments.

* %k Xk

These routines are versions of standard DOS-15 source files - crea-

ted using special assembly parameters - see the XVM/DOS VIA

System Installation Guide.

Loading and Execution

2.6.3 XVM/RSX Components

and
RSX.P2 XXX

NOMENCLATURE SOURCE FILE NAME | TASK NAME

RK05 Cartridge Disk File RFRES XXX RK
Handler

Disk File Handler Overlay RFOPEN XXX RK
Disk File Handler Overlay RFCLOS XXX RK
Disk File Handler Overlay RFREAD XXX RK
Disk File Handler Overlay RFDLET XXX RK ..0.
Disk File Handler Overlay RFCREA XXX RK
Line Printer Handler LP.XX SRC IP
Card Reader Handler CD.... XXX CD
UNICHANNEL Poller POLLER XXX . POLLER
Plotter Handler XY.XX SRC XY
Executive RSX.P1l XXX NA

CHAPTER 3
SYSTEM DESIGN AND THEORY OF OPERATION--PIREX

This chapter describes the design and theory of operation of the XVM
UNICHANNEL Peripheral Processor Executive. Knowledge of this infor-
mation is necessary to successfully modify the XVM UNICHANNEL Software
System. Chapter 4 will discuss techniques for modification of the
PIREX system.

3.1 PIREX--PERIPHERAL EXECUTIVE

PIREX is a multiprogramming peripheral processor executive designed

to provide device driver support to operating systems on the DIGITAL
XVM main-processor. PIREX is designed to be as independent of the
particular XVM operating system as possible, executing in conjunction
with XVM/DOS, BOSS XVM, or XVM/RSX. The PIREX Software System is des-
igned to maximize flexibility and expandability and to minimize system
overhead and complexity. To accomplish this, special software and
hardware features are designed into the system.

3.1.1 PIREX-An Overview

PIREX is loaded from the XVM high-speed reader into the PDP-11 1local
memory and automatically started. Once running, PIREX is capable of
accepting multiple requests and directives from the XVM or PDP-11 and
processing them on a controlled-priority basis. Task requests are
automatically queued (see Figure 3-1) and processed whenever the task
in reference is free. When a particular device or routine completes
the processing of a request, status information (e.g., parity or check-

sum errors, transfer OK, etc.) is passed back to the caller.

At the completion of a XVM request, an optional hardware interrupt is
initiated in the XVM on any one of 128 possible API trap locations and
at any one of 4 hardware API levels if requested. Since the software
completely determines which interrupt vector and level to use when
completing XVM requests, the routines initiating the interrupts could

actually be software routines used to simulate hardware conditions or

System Design and Theorv of Operation-—PIREX

PDP-11-PIREX
REQUEST

SLAREQ
entry BUMP PC SAVED
j———————®» IN STACK TO

RETURN ADDRESS

XVM-+PIREX

MASREQ. .. _REQUEST

.. .SLAREQ

SAVE R@-R5 ON
CURRENT STACK;
UPDATE ENTRIES
IN ATL NODE

MASREQ
entry *

SWITCH TO
SYSTEM STACK

GET TCBP AND
RELOCATE IT.
GET TASK CODE

TASK CURRENT-
LY BUSY
?

BUILD ATL NODE

TAKE REFERENCED
TASK AS SPOOLER

ESTABLISH TASK

Y

Y

TELL XVM QUEUE REQUEST STACK WITH
ERROR TCB IN TASKS TRL START ADDRESS
& PRIORITY

Y

Figure 3-1

EXIT TO
ATL SCANNER

Basic Flow Chart of XVM/PDP-11 Request Processing

System Design and Theory of Operation--PIREX

just software tasks. If the request is issued from the PDP-11, the
user may request an optional software interrupt after completion of the
current request.

3.1.2 PIREX Services

The PIREX executive consists of modules that provide support for multi-
ple I/0 oriented tasks operating asynchronously with each other. 1In
addition, support is provided for other background tasks such as MAC11.
The services provided to tasks operating under PIREX include:

e Context switching - transferring control of the PDP-11
Central Processing Unit (CPU) from one task to another.

¢ Interprocessor communication - receiving requests for
service from, and, sending results to the XVM main
processor.

e Intraprocessor communication - receiving requests for
service from, and, sending results to tasks operating on
the PDP-11 peripheral processor.

® Scheduling - determining which task is to execute next.

e Request Queuing - stacking requests for a busy task until
it is able to process them.

® Timing - providing a timed wake-up service for requesting
tasks.

® Error Reporting - providing a list of current device and
task errors to the XVM executive, on demand.

e Directive Processing - providing the XVM monitor with
specific services such as: notification of available
memory space, connecting, disconnecting or stopping tasks
and returning the status of certain tasks.

These services are provided to both device driver tasks and background

tasks.

3.1.3 Device Drivers

Device Drivers are tasks that typically perform rudimentary device
functions such as read, write, search, process, interrupt, etc. They
can, however, be complete handlers, performing complex operations such
as character generation and directory searching. PIREX provides each
driver with requests for I/0 actions and returns the results of the
actions to the caller. Associated drivers are provided for the RK05
Disk Cartridge, the LP11/LS11/LV11 Line Printer, the CR11 Card Reader,
and the XY1ll Plotter.

System Design and Theory of Operation--PIREX

3.1.4 Software Routines in Background Mode

The following are run as background tasks--executing only when I/0
drive tasks are idle:

1. SPOL1l -- an input/output spooling processor

2, MACll -- A MACRO assembler for the PDP-11

3.1.5 Unsupported Tasks

All tasks supplied with the PIREX software system are fully supported
by Digital Equipment Corp. except the DECtape Driver task (DT). The
DT task has not been completely tested, but is included in the system
for illustrative purposes and for anyone who may desire to develop
DECtape capability on the PDP-11.

3.1.6 Optional LV Support

For reasons of packaging optional LV support on a printer and a plotter
is present in the standard PIREX ($LV=0). This support, however, is
only at the device driver level. The PDP-15 side modules display-file-
to-vector, vector-to-raster, and LV I/O handler may be purchased separa-
tely. Information is available through PDP-15 Marketing.

3.1.7 Optional DL Support

The DL-11 is supported as a communications protocal device between a
DEC system-10 and a PDP-15. The code for this support is purchased
separately and is available from the SDC. Information is available
through PDP-15 Marketing.

3.1.8 Power Fail Routine

A power fail section is present in PIREX. It is, however, not sup-
ported by DEC and currently only saves the general registers and does
not attempt to handle I/0 in progress. This routine could be expanded
by the user into a complete power fail handler.

System Design and Theory of Operation--PIREX

3.2 PIREX - SIMPLIFIED THEORY OF OPERATION
3.2.1 NUL Task

When the PIREX Software System is running, it is normally executing the
NUL Task (a PDP-11 WAIT instruction). The NUL Task is executed when-
ever there are no other runnable tasgks or while all other tasks are in
the WAIT state waiting for pPreviously initiated I/0. The NUL Task
entry is a permanent element in the Active Task List. The Active Task
List is a priority ordered list of tasks that is used to schedule the
next task to be executed. The NUL task occupies the last position in
the Active Task List (ATL).

3.2.2 Clock Task

One other permanent entry in the ATL is the Clock Task. The Clock Task
is entered once every 16.6 milliseconds for 60 Hz machines (20.0 milli-
seconds for 50 Hz). 1Its primary function is to provide other tasks

with a wake up service. A typical use of the Clock Task would be to

wake up the Line Printer Task every two seconds to check the Line Printer
status for a change from OFF LINE to ON LINE. The Clock Task operates

at the highest priority on the ATL.

3.2.3 Request Processing

When the XVM issues a request to the PDP-11 to be carried out by PIREX,
it does so by interrupting the PDP-11 at level 7 (the highest PDP-11
priority level) and simultaneously passing it the address of a Task
Control Block (TCB) through the interrupt link. This address is called
the Task Control Block Pointer (TCBP). A PDP-11 task can issue re-
quests to other tasks via the IREQ macro. The IREQ macro simulates

the XVM request process and results in a TCBP being passed to PIREX.
The contents of the Task Control Block completely describe the request
(task addressed, function, optional interrupt return address and level,
status words, etc,). The TCB will reside in the 'Common' Memory if

the request is issued from the XVM or in the 'Common' or 'Local'

Memory if the request is issued from the PDP~-11.

The flow chart in Figure 3-1 illustrates the basic processing of
requests to PIREX from the XVM or the PDP-11. Note that error condi-
tions are passed back to either central processor in the TCB or via

an error table to the XVM monitor poller along with status information

Syvstem Design and Theory of Operation--—PIREX

necessary for control and monitoring of a request. Usually the request

is to a device on the PDP-11 but other types are allowed.

3.2.4 Task Structure

A task is a PDP-11 software routine capable of being requested by the
XVM or PDP-11 through the PIREX software system. The task may be a
device driver, a directive processor, or just a software routine used
to carry out a specified function. A task must have the format shown
in Figure 3-2, TASK FORMAT.

ok de ke LOWER CORE
* *
task stack area v
] '
* *
¥k k%
control register *
* k%%
busy/idle switch * *
* *
% % kX
* *
task program * %
code S
* *
* *
*kkk HIGHER CORE

Figure 3-2
Task Format

This structure consists of four sections; two are variable in size and
two are fixed.

The "task program code" size is variable and contains the programming

code necessary to carry out the task function.

The "busy/idle switch" consists of two words and is used by PIREX to
determine if a task is busy or idle. The TCBP of the current request
is stored in this section when the task is busy. This also enables a

task to easily access the TCB.

The "control register" is either a dummy address (an address which

points to an unused software variable) or the address of a device

3-6

System Design and Theory of Operation--PIREX

control register if the task is an I/O driver. This word is used only
by the STOP TASKS (ST) task when shutting down I/O operations.

The "stack area" begins immediately below the control register and
builds dynamically downwards. The purpose of the stack is to allow

each task free use of a private space for temporary storage of data
while it is executing and all its active registers during times when
other higher priority tasks are being run. The stack area must be

large enough to store the maximum number of temporary variables used

at any one time plus one context register save. A context save requires
8 words of stack area plus an additional 3 words if the PDP-11 has an
Extended Arithmetic Element (EAE). The stack size is fixed and deter-
mined at PIREX assembly time.

3.2.5 Task Control Block - TCB

Tasks, in PIREX, receive requests for action and return the results of
their action in blocks of information called Task Control Blocks (TCB) .
The general format of a TCB consists of three words followed by task-
specific optional words. The following information must be present

in all TCBs since PIREX will honor requests in this format only.

15 8 7 0
TCB: API TRAP ADDRESS API LEVEL WORD O
FUNCTION CODE TASK CODE NUMBER WORD 1
REV: REQUEST EVENT VARIABLE WORD 2
OPTIONAL WORDS WORD 3-N

3.2.5.1 API Trap Address and Level -~ The API trap address is a XVM

API trap vector and has a value between 0 and 1778 when a hardware
interrupt on the XVM is required. Location 0 corresponds to location

0 in the XVM. The "API" level is the priority level at which the
interrupt will occur in the XVM and has a value between 0 and 3 when

a hardware interrupt on the XVM is required. A 0 signifies API level
0, a 1 for level 1, etc. The API trap address and level are used by
tasks in the PDP-11 when informing the XVM that the requested operation
is complete (e.g., a disk block transferred or line printed). If the
XVM master computer doesn't have API or if API is not enabled, the
PDP-11 issues an interrupt that when received is polled by the XVM using
4 UCl5 skips (one per level) on the traditional skip chain.l

lAPI is optional on PDP-15's, standard on XVM's.

System Design and Theory of Operation--PIREX

3.2.5.2 Function Code - The Function Code determines whether hardware
interrupts on the PDP-15 or software interrupts on the PDP-11 are to be
used at the completion of the request. If the code has a value of 0,

a hardware interrupt is generated on the XVM at the completion of the
request; if a 1, an interrupt is not made. If the Function Code is a
3, a software interrupt is issued by PIREX. The task routine or pro-
gram using this facility sets up the trap address in the SEND1l table
in PIREX prior to issuing the request to the task. The task or route
should return to PIREX after interrupt processing through an "RTS PC"
instruction. All registers are available for use by tasks.

3.2.5.3 Task Code Number - The Task Code Number (TCN) is a positive
(1—1778)l or a negative (200—3778) 7-bit number plus a sign bit that
informs PIREX which task is being referenced. The mnemonic TCN as
used in this manual refers to the 7-bit portion of the Task Code
Number. Tasks are addressed by a numeric value rather than by name.
Tasks with positive code numbers are spooled tasks and tasks with
negative code numbers are unspooled tasks. When the SPOOLER (see
Chapter 5) is enabled and running, requests to spooled tasks are
routed to the SPOOLER. When the SPOOLER is disabled, requests to
spooled tasks are routed directly to device drivers.

Task Code Numbers are currently assigned as follows:

CODE2 TCN TASK

-13 -1 CL task (Clock) Driver task3
200 0 ST task (Stop Task) Software task
201 1 SD task (Software Directive) Directive task
202 2 RF task (Cartridge Disk) Driver task
203 3 DT task (DECTAPE) _Driver task

4 4 LP task (Line Printer) . Driver task

5 5 CD task (Card Reader) Driver task

6 6 PL task (Plotter) Driver task
207 7 SP task (Spooler) Background task
210 10 LV task (Printer/Plotter) Driver task
211 11 DL task (Hurley protocal Driver task

communication task)

212 12 Currently not used -
213 13 Currently not used -
214 14 Temporary Task Entry Temporary task

1A task code of 0 indicates the STOP TASKS DIRECTIVE - See Section 3.5
2The code column corresponds to the typical task code in the TCB
The minus 1 is represented internally as 377

3-8

System Design and Theory of Operation--PIREX

PIREX is currently capable of handling these 14 tasks. Tasks 11-14
are spare task codes available for customer use.1

3.2.5.4 Request Event Variable - The REQUEST EVENT VARIABLE, commonly
called REV, is initially cleared by PIREX (set to zero) when the TCB
request is first received and later set to a value "n" (by the asso-
ciated task) at the completion of the request. The values of "n" are:

0 = request pending or not yet completed
1l = request successfully completed
=200 = (mod 216—1) nonexistent task referenced
-300 = (mod 216—1) illegal API level given (illegal values
are changed to level 3 and processed)
-400 = (mod 216—1) illegal directive code given
=500 = (mod 216—1) no free core in the PDP-11 local memory
-600 = (mod 216—1) ATL node for this TCN missing
=777 = (mod 216-1) request node was not available from the

POOL (i.e., the node POOL was empty, and the ref-
erenced task was currently busy or the task did not
have an ATL node in the Active Task List)

When an address is passed in a TCB as data, the receiver of the address
must relocate it to correspond to the addressing structure in its
memory space. For example, a PDP-15 address passed to the PDP-11

must first be multiplied by two to convert word to byte addressing

and then the local memory size (LMS) of the PDP-11 must be added.

For example,

PDP-11 address = (PDP-15 address *2) + LMS on PDP-11

The reverse is true for a PDP-11 address received by the XVM. For
example,

XVM address = (PDP-11 address - LMS)/2

lSee Section 4.4 for further information.

System Design and Theory of Operation--PIREX

3.3 SYSTEM TABLES AND LISTS

The PIREX system uses various tables, lists, and deques to control
events within the system.

3.3.1 Active Task List (ATL)

The selection of a task for execution by PIREX is accomplished by first
scanning a priority-ordered linked list of all active tasks in the
system called the Active Task List (ATL). An active task is one which
satisfies one or more of the following conditions:

1. is currently executing
2. has a new request pending in its deque
3. is in a wait state, or

4. has been interrupted by a higher priority task

A task is inactive if there is no ATL node for it. A task can be in
any one of the following states:

CODE STATE ACTIVITY
0 run active
2 wait active
4 exit inactive

When a runnable task is found, the stack area and general purpose reg-
isters belonging to that task are restored and program control is trans-
ferred to it through an RTI instruction. Program execution normally
begins at the first location of the task diagram code (see Figure 3-3)
or at the point where the task was previously interrupted by a higher
priority task, or in special cases at any desired location in the task
using the 'PC' setting on the stack as in the RK task's error retry
program logic. When a task is interrupted by other tasks, its general
purpose registers are saved on its own stack. Control is returned to
the interrupted task by restoring its stack pointer and then its active
registers.

System Design and Theory of Operation——PIREX

XVM TO PDP-11+PIREX
MA e SLAREQ ...
SREQ PIREX REQUES LAREQ REQUEST
SLAREQ
SAVE R@-R5 ON
CURRENT STACK; | entry | BUMP PC SAVED
UPDATE ENTRIES B>l ON STACK TO
IN ATT. NODE RETRY ADDRESS
MASREQ
entry *
READ TCBP FROM SWITCH TO

INTERRUPT LINK |eg————] SYSTEM STACK
& RELOCATE TCB

GET TCBP AND
————® RELOCATE IT.
GET TASK CODE

SPOOLED
TASK
?

SPOOLER
RUNNING

. . .next page

TAKE REFERENCED
TASK AS SPOOLER

Figure 3-3
Detailed Flow Chart of XVM/PDP-11 Request Processing

3-11

System Design and Theory of Operation--PIREX

CALLTK ...

LVL783 ...

IFIED IN TCB
LEGAL?

SET EVENT VARIABLE
IN CALLERS TCB TO
'-2¢@', INDICATING
THAT AN ILLEGAL
TASK (NON-EXISTENT
ONE) WAS SPECIFIED

SEND INTERRUPT BACK
(IF REQUESTED) IN-
FORMING THAT THE
REQUEST COULD NOT
BE PROCESSED

Figure 3-3 (Cont.)

. «.next
page

1

{

‘ Rescan the ATL
from the top.
See Figure 3-4.

Detailed Flow Chart of XVM/PDP-11 Request Processing

System Design and Theory of Operation—-—-PIREX

GET A NODE FROM
POOL AND MOVE

IT TO THE REF-
ERENCED TASKS
DEQUE SAVE THE
18 BIT TCBP IN
THE NODE SO TASK
WILL HAVE IT
WHEN NEEDED.

NODES
LEFT IN
POOL?

ENCED TASK
CURRENTLY

SET CALLERS EV
TO =777 (WORD
16) INDICATING
THAT THE SYSTEM
IS TEMPORARILY
OUT OF NODES IN
THE POOL.

LVL784
SCAN THE ATL

FOR AN ENTRY
(PRIORITY WISE)
FOR THIS NODE

USE TCBP TO SET LVL785
TASK'S IDLE/BUSY
REGISTER TO BUSY
AND CLEAR THE EV
IN CALLERS TCB.

AN ACTIVE
TASK LIST NODE
ALREADY EXIST
FOR THIS

ANY
Rescan the

NODES

LEFT IN ATL from

POOL?, top. See
Figure 3-4.

REMOVE NODE FROM
POOL AND PUT IN

ATL

FILL IN TASK
PRIORITY TASK
CODE NUMBER,
AND TASK STACK
POINTER IN ATL

NODE

SET TASK PRIORITY
AND TASK START
——p»| ADDRESS IN TASK'S
STACK AREA TO BE
USED WHEN TASK
IS EXECUTED

A

Figure 3-3 (Cont.)
Detailed Flow Chart of XVM/PDP-11 Request Processing

3-13

System Design and Theory of Operation--PIREX

The ATL is rescanned when:

l. a new request is issued to a task
2. a previous request is completed
3. at the end of a clock interrupt

4. a task goes into a wait state

A task is said to be in a "wait" state when its ATI, node exists and it
is not runnable.

3.3.1.1 ATL Nodes -~ The Active Task List is a linked list containing
4 word entries called nodes.

An ATL node has the following structure:

WORD 1 - Forward pointer to next node

WORD 2 - Backward pointer to previous node -
WORD 3 - Stack pointer of task
WORD 4 l15|14Il3]l2|11|10|9'8'7]6[5,4J3‘2]1|6]

— —— —~——— J

Task Priority-———-—l

Spooling Indicator
spooled
1 not spooled

Task Code Number (TCN)

TASK STATUS (States defined in 3.3.1)

The ATL is referenced by a 2-word listhead. The listhead contains
backward and forward links pointing to the first and last nodes in the
list. The ATL is a priority-ordered list.

3.3.1.2 ATL Node Pointer (ATLNP) - Each task has a pointer to its
Active Task List Node (see Section 3.3.1.1) stored in the ATLNP
table. This table is in TCN order. An entry is 0 if the task is

inactive.

System Design and Theory of Operation--PIREX

The format of an ATLNP entry is:

0 ; NAME task—code—numberl
These entries are filled dynamically by PIREX with actual pointers.
3.3.2 Task Request List (TRL)
The Task Request Lists are doubly-linked, deque-structured lists of
pending TCBs. If when a request arrives, the target task is busy,

PIREX places the TCB pointer (TCBP) onto the busy task's deque for
later processing. This deque is the Task Request List,

A TRL node has the following structure:

WORD 1 - Forward pointer to next node,

WORD 2 - Backward pointer to previous node.

worD 3 - |15]|14]13[1211]10[9]8[7]6[5]4][3]2]1]0]
-

Request Identi%igza

0 PDP-15 request

1 PDP-11 request

Most significant bits of the TCBP (XVM bits 0 and 1)

WORD 4 - 16 least significant bits of TCBP (XVM bits 2~17)
Each TRL is referenced by a two-word listhead. The listhead contains
backward and forward links pointing to the last and first nodes of a
given task's TRL. The TRL is built on a first come first serve basis,
3.3.3 TRL Listheads (LISTHD)
Each task has its own Task Request List, (TRL). Each LISTHD entry is

a double-linked listhead used to point to a task's TRL. The LISTHD
is a TCN ordered list.

1The "NAME task-code-~number" is a comment

System Design and Theory of Operation--PIREX

The format for an entry is:

LISTHEAD XX

where:

1. LISTHEAD is a system macro
2. XX is a two character task mnemonic (i.e., LP for Line
Printer Task).

3.3.4 Clock Request Table (CLTABL)

The Clock Table (CLTABL) contains entries for one timing (wake up) re-
quest from each task. The format of a CLTABLE entry is:

Xxl.CL = .

.WORD 1 ; Time Word

.WORD 1 ; Address Word

Where the first word is remaining time before wakeup and the second

word is the address for a JSR PC, XXX instruction. The JSR occurs at
clock interrupt level (6). The user must do an RTS PC to return con-
trol to the clock routine. Time is measured in line frequency ticks:
16.6 milliseconds/tick for 60 Hz Systems. A task may cancel a timing
request by clearing the time word. A request for a wakeup is made by:

1. Placing the address of the routine to be called into
word 2 - then

2. Placing the time delay (measured in 1/60 sec. increments)
into the time word.

The above sequence must be exactly followed. See Chapter 4 for further
details on the use of wakeup calls. CLTABL is a TCN ordered list.

3.3.5 Device Error Status Table (DEVST)

The DEVST table is used to store error status codes for delayed trans-
fer to the XVM monitor. The XVM monitor contains a routine called the

lXX represents the task mnemonic (e.g., RK.CL)

System Design and Theory of Operation--PIREX

"Poller" which periodically réquests error status codes from PIREX using
a "get errors" software directive. This method of error transmission is
useful for delayed error messages--such as those recognized on spooled
devices. The specific XVM I/O handler may no longer be present in the
PDP-15's memory-~-thus the Request Event Variable (REV) method of return-
ing error status would be useless. The "Poller" requests the entire
DEVST table and reports those events on the system console terminal.

A "Get Errors" directive clears the DEVST table upon completion. The
reporting task may, for instance, correct the error condition before

the "Get Error" directive is issued. When this happens, the task could
simply clear its message from the DEVST table and thus eliminate a
spurious message., DEVST is a TCN ordered table. The format of a DEVST
entry is as follows:

WORD 1 - TASK (MNEMONIC IN SIXBIT/RAD50 RIGHT JUSTIFIED)

WORD 2 - SPARE (used to report bad block numbers, and, to
report disconnected spooler unit)
WORD 3 - ERROR CODE: SPOOLER ERROR CODE (HIGH BYTE)
TASK ERROR CODE (LOW BYTE)

3.3.6 LEVEL Table

The LEVEL table (task priority level) is used by the R.SAVE context
switch routine to determine the priority level of the task about to
begin execution. All interrupt vectors must specify a priority 7
entry into their respective interrupt routines. Upon entry, R.SAVE
should be called to save the interrupt task state and return control
to the interrupt processing routine at the proper priority--found in
the LEVEL table. The LEVEL table is a TCN ordered task.

The LEVEL table entry format is:

.BYTE task priority *40
3.3.7 Task Starting Address (TEVADD)
The TEVADD Table contains the starting address of all defined tasks.
The system currently has room for 138 tasks of which three are tempor-
ary entries used for tasks CONNECTED to and DISCONNECTED from PIREX.

MACl1l is such a temporary task and uses the table entries of the cur-
rently unused highest task code. All PIREX systems must have at least

System Design and Theory of Operation--PIREX

one highest unused task entry to allow use of MACll. The TEVADD table
is TCN ordered.

The format of a TEVADD table entry is:
.WORD START ; task name
where START is either:

1. The starting address of the task, or,

2. 0 indicating that this entry is currently unoccupied.
where "Task name" is a comment.
3.3.8 Transfer Vector Table (SEND11l)
The SENDl1l table is used to store transfer vectors for use when issuing
IREQ macro calls. The entry is the address at which the requesting
routine receives control back from PIREX. This table is TCN ordered.
The format of a SEND1l entry is:

0 ; task-name task-code-number
where "task name task-code-number" is a comment.
3.3.9 System Interrupt Vectors
The device interrupt vector-pairs consist of interrupt routine address
and priority level, The priority level of "all" devices should be
Level-7 "only". This is to permit PIREX to do a context switch before
processing the interrupt.
3.3.10 Internal Tables Accessible to All Tasks
All tasks in the PIREX system can easily access internal routines and
tables through the use of the system registers. These registers begin
at absolute location 10028 in the PDP-11 and contain either pointers

to internal tables and listheads or entry points to commonly used sub-
routines. The following list summarizes these registers.

System Design and Theory of Operation--PIREX

LOCATION MNEMONIC DESCRIPTION

01002 SEND11 INT. RETURN ADD. (ON 11) ON END
OF I1I/0

01004 CURTSK: 000000 CURRENT TASK RUNNING

01006 POL.LH ADDRESS OF POOL LISTHEAD

01010 LISTHD ADDRESS OF TASK LISTHEADS

01012 R.SAVE ENTRY POINT TO REGISTER SAVE

01014 R.REST ENTRY POINT TO REGISTER RESTORE

01016 AS.E1l ENTRY POINT TO ATL RESCAN

01020 MOVEN ENTRY POINT TO NODE MOVER

01022 DEQU ENTRY POINT TO DEQUEUE

01024 SEND15 ENTRY POINT TO SEND INTERRUPT

01026 EMPTY ENTRY POINT TO EMPTY A DEQUE

01030 ATLNP ATL NODE POINTER TABLE

01032 RATLN ENTRY POINT TO RETURN ATIL NODE

01034 SPOLSW SPOOLER SWITCHES ADDRESS

01036 RTURN REUTURN INST. ADD. FOR PIC CODE

01040 NBRTEV: NTEV CURRENT NBR OF TASKS

01042 PWRDWN: RTURN ENTRY POINT TO PWR FAIL DOWN

01044 PWRUP: RTURN ENTRY POINT TO PWR FAIL UP

01046 SPOLSW: 000000 SPOOLER SWITCHES

01050 DEVST DEVICE ERROR STATUS TABLE

01052 CLTABL TABLE, A TIME-ADDR PAIR FOR EACH
TASK

01054 DEQU1 ENTRY TO -SET TASK IN WAIT
STATE-ROUTINE

01056 CEXIT ENTRY TO -SET TASK IN RUN STATE-
ROUTINE

01060 TEVADD TABLE OF TASK START ADDRESSES

01062 DEVARE: .WORD DEVTYP PIREX DEVICES SWITCH

01064 DEVSPL: .WORD O DEVICES SPOOLED SWITCH

01066 CTLCNT: .WORD O XVM CTL C RUNNING COUNTER

01067 SPUNIT: .WORD O UNIT CURRENTLY BEING SPOOLED TO

i
These registers are accessed as absolute memory locations by various
permanent and temporary tasks. NO CHANGE in the location or order of

this table is permitted. New system registers may be added to the
end of this table.

3.4 DETAILED THEORY OF OPERATION-PIREX
3.4.1 Request Procedure

The UCl5 system allows the XVM to initiate requests to the PDP-11 by
interrupting at the highest PDP-11 hardware level and simultaneously
passing to it an 18-bit Task Control Block address. Only the first 16
bits are used because PIREX does not support a memory management option1
on the PDP-1l. Requests from the XVM or PDP-11 could be for:

1Memory management hardware support is not a feature of PIREX.

3-19

System Design and Theory of Operation--PIREX

1. a directive-handing routine
2., a data transfer to or from a device driver task on the PDP-11

3. a background software routine (task)
3.4.2 Directive Handlingl
Directive handling consists of such functions as:

1. Connecting and disconnecting tasks from the PIREX system

2. Reporting core status on the PDP-1ll1l local memory to the
calling routine

3. Stopping I/O on a particular device or all devices
4. Reporting UNIBUS device status to the calling routine
5. Stopping any or all tasks currently running2

6. Reporting spooler status to the caller
3.4.3 Logic Flow

The flow charts in Figures 3-3, 3-4, and 3-5 illustrate in detail the
program logic flow when a request from the XVM or PDP-1l1 is made to
PIREX. Note that PIREX is capable of servicing requests in parallel
on a priority basis.

3.4.4 Operating Segquence

PIREX is usually running the NUL task waiting for something to do. When
a request is issued from the XVM or PDP-11, PIREX immediately:

1., saves the general-purpose registers onto the stack belonging
to the current task running

2. saves the stack pointer in the ATL nodes

3. sets the task in a RUN state

4, switches to the system stack (refer to Figure 3-5)

All of the preceding is done at level 7 (protected). The system stack
is used when switching between tasks or rescanning the ATL,

lSee Section 3.6 for additional information.
See Section 3.5 for additional information.

3-20

System Design and_Theory of Operation~-PIREX

AS.SCN
AS.E2

AS.E1l

BEGIN SCAN OF
ATL STARTING AT
THE ATL LISTHEAD

ADVANCE SEARCH
TO NEXT NODE

REMOVE THE TASK
STATUS (TS) FROM
NODE AND USE IT
TO DISPATCH TO
THE APPROPRIATE
PROCESSING
ROUTINE

TS=¢J
AS.TE

A RUNNABLE TASK
HAS BEEN FOUND,
SAVE SYSTEM
STACK POINTER,
AND SWITCH TO
NEW TASK'S STACK

TS=2¢

TS=4
AS.STP

TASK IS IN A
WAIT STATE,
BY-PASS 1IT.

TASK MUST BE
STOPPED. RETURN
TO ATL NODE TO
POOL. (KEEP LINK
TO NEXT NODE.)

Y

RESTORE ALL SYSTEM|
REGISTERS R@-R7

GO TO TASK

AS.SCN

Figure 3-4

AS.E2

Scan of Active Task List (ATL)

System Design _and Theory of Operation--PIREX

R.SAVE

SAVE R1-R5 (R@
SAVED ON CALL)
AND AC,MQ,SC IF
EAE OPTION

!

GET TASK CODE
(TCN) AND BUMP
R# TO RETURN
ADDRESS

!

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

MOV R@,PC

SET 'SP' FROM
INTERRUPTING
TASKS ATL NODE

Y

SET TASK IN
RUN STATE

v

LOWER PRICRITY
LEVEL OF TASK

Figure 3-5
Context Switch or Save General Purpose Registers RO-R5

3-22

System Design and Theory of Operation--~PIREX

In the case of a XVM request, the TCBP (Task Control Block Pointer)
register is now immediately read by the PDP-11 allowing additional re-
quests to be made. PIREX corrects the TCRBP by an amount equal to the
PDP-11 local memory when a request comes from the XVM. The TCBP is
present in R4 and R5 when the IREQ macro is issued by a PDP-11 routine
and the PDP-11 is able to address the TCB directly and retrieve infor-
mation from it. The task code number is then obtained from the caller
TCB and used to determine which task or directive that is being
referenced.

A check is made to determine if the called task is a spooled task or
not. If bit 7 = 0, it is a spooled task and if bit 7 = 1, it is an
unspooled task. If the called task is a spooled task and if the SPOOLER
is enabled, the request is processed by the SPOOLER. If the SPOOLER

is not enabled, a check is made to determine if the task in reference

is currently active and busy with a previous request. If so, the request
is queued to the task's deque (TRL) on a first come, first serve basis.
If the task in reference is currently inactive, an ATL node is built
containing the appropriate entries, the address of the ATL node is set
in the ATLNP table and the task's priority in the LEVEL table. 1In
either case, the ATL is rescanned and the highest priority task is
selected for execution (see Figure 3-4).

UC15 peripherals, controlled by PIREX, use a minimal driver to carry
out requested functions and report the results back to the calling task
via the TCB. When a driver finishes a request (whether an error occur-
red or not), it informs the requestor by placing the results (status
and error register) in the TCB associated with that request and sends
an optional hardware or software interrupt back to the requestor.

The request event variable (REV) is set prior to sending an interrupt

to the XVM/PDP-11 and may be used by the XVM or PDP-11 to determine

if a request has been processed. This method is used during times

when interrupts are not enabled or desired (as during the bootstrapping
operation on the XVM). The hardware interrupt to the XVM (see

Figure 3-6) is optional and can be made at any of the XVM API hardware
levels and trap addresses. The API level and trap address are specified
in the TCB associated with each request to allow complete flexibility

in interrupt control.

System Design and Theory of Operation--PIREX

SEND15

GET API LEVEL SET REV IN TCB

SET REV TO
'=300' AND
ASSUME LEVEL
3

LOWER TO TASK
PRIORITY LEVEL

'

GET API TRAP CALL @SEND1l
ADDRESS FROM (TASK CODE *2)
TCB

'

SET REV IN TCB

'

ISSUE
INTERRUPT

RETURN

Figure 3-6
Send Hardware Interrupt to XVM/Software Interrupt to PDP-11

System Design and Theory of Operation-~PIREX

3.4.5 sSoftware Interrupt

A software interrupt return for the PDP-11 tasks is optional. This
feature is available only if a hardware interrupt return to the XVM

is not required. To generate a software interrupt, the task using the
request has to set the trap address before issuing the request. Each
task running under PIREX has an entry in the SEND1l Transfer Vector
Table. PIREX traps to this location on completion of a request by
executing a JSR PC, SENDll (Task Code *2). The task issuing the re-
quest specifies its task code in the TCB. A1l registers are free to
be used when the control is transferred. Control is returned to PIREX
through an RTS PC instruction.

3.4.6 Task Completion

When the XVM has been notified (via interrupt) that its request has

been completed, the task completing the request under PIREX becomes idle
and calls DEQU (see Figure 3-7) to determine if any additional requests
are pending. If no reguests are pending, control is transferred to

the ATL scanner (after saving the stack pointer and setting the current
task in a wait state in its ATL node). If additional requests exist,
the next request in the task's TRL is processed as if it were just
received.

3.5 STOP TASKS

The STOP TASKS Task is used to stop tasks and/or I/0 currently underway
for either all tasks or for a particular task. STOP TASKS can cancel
all requests or only XVM requests for the indicated task (s). There

are four possibilities:

1. Stop all tasks unconditionally and cancel all pending XVM
requests

2. Stop a given task unconditionally and cancel all pending XVM
requests to that task

3. Cancel all XVM requests to all tasks - this has no effect
on PDP-11 requests

4. Cancel all XVM requests to a given task - this has no
effect on PDP-11 requests

The process of stopping a task includes (1 or 2 above):

System Design and Theory of Operation--PIREX

SET TASK'S
BUSY/IDLE SWITCH
WITH NEW TCBP

!

ZERO TCBP IN NODE
AND RETURN NODE

'

SET TASK PRIORITY

EXIT TO TASK

RAISE TO LEVEL 7

'

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

!

SET CURRENT TASK
IN WAIT STATE

'

SWITCH TO SYSTEM
STACK

AS.SCN ..

Figure 3-7
Dequeue Node From Task's Deque

.See Figure
3-4.

System Design and Theory of Operation--PIREX

1. Removal of all appropriate XVM request nodes in the task(s)
TRL (s)

2. Zero the Busy Idle Switch for the task(s)
3. Clear the I/O device register(s) for the task(s)

4. Set the tasks status in the ATL to EXIT (for a temporary
task) or WAIT (for a permanent task) .

5. Indicate completion by setting the REV of the STOP TASKS
requestor. (An interrupt return is not allowed.)

The Stop Tasks TCB has the following format:

15 0
TCB: 0 Word O
TCN 200 Word 1
REV: REV Word 2

Word 1 bit 15 = 1 cancel XVMrréquésts and the current
pending request unconditionally.

bit 15 = 0 cancel XVM requests

TCN = 0 cancel all tasks

TCN #0 cancel Task TCN only
Word 2 REV = Return Event Variable

STOP TASKS is typically used by the XVM operating system to quiet all
interaction between the XVM and the PDP-11.

3.6 SOFTWARE DIRECTIVE PROCESSING
The software directive task provides two main capabilities. These are:
1. The capability to connect and disconnect temporary tasks to
PIREX {such as MAC11

2. The capability to obtain various PIREX status information.

These capabilities are provided via five software directives, which

are described later in this section.

The general format for software directive task control blocks is as

follows:

System Design and Theory of Operation--PIREX

15 8,7 g,
: ATA ! ALV ' word g
: ..t 1 1. 1 1 1[7! [S B I B B :
' FCN ' 291 v word 1
: 1.0t 3 ¢ 9 8 0 ¥ ¥ ¥y ' 1 3.1 :
H REV v word 2
:4 L.l J. 1. 1 1 _; J. L . 1+ 1.9 :
i OPR H v word 3
SN T N '
)
; Contents Depend 5
Upon ’
f £
! Directive 1 word n
vy s 1.t) 8 v v F_8 % t ¥y o3 00
ATA XVM API interrupt vector address
ALV XVM API interrupt priority level. Must be 0, 1, 2, or 3
(unless FCN = 3).
FCN Function to perform upon completion of this software directive

request. Valid values are:

000 Interrupt the XVM at address ATA, priority ALV.
001 Do nothing (except set REV).
003 Cause a software interrupt to the PDP-11 task whose
task code number is in ALV.
REV Request Event Variable. Initially zero, set to a non-zero

value to indicate completion of the software directive request.
The meaning of the various return values is described below.

OPR Indicates the exact operation (directive) to be performed.
Must be one of the following values:

0

1

Disconnect Task
Connect Task

Core Status Report
Error Status Report
Spooler Status Report

MOVE

Returned REV values

1

-300

-400

Other

Successful completion

Invalid ALV value. The regquest may or may not have
been performed - see individual directive descriptions.
The XVM will be interrupted at level 3.

Invalid OPR (directive/operation code) value.

See individual directive descriptions.

System Design and Theory of Operation--PIREX

The following sections contain detailed descriptions of the individual
software directives, their task control block (TCB) formats, and the
REV values they may return.

3.6.1 Disconnect Task Directive

The disconnect task software directive instructs PIREX to delete a
task from the active task list. Request should not be issued to a
task after it has been disconnected. An attempt to issue a request
to a disconnected task will result in a returned REV value of -200,
implying that a non-existent task was referenced, The format of the
task control block for the disconnect task software directive is as

follows:

,15 8,7 2

1) L] 1

! ATA H ALV 7 word g

: L S S S N A | : L JE AN B T N) :

H FCN H 201 v word 1

: | S NN S I O T N | L1 .0 1 9 :

H REV 7y word 2

: y. 53 ' 3 v 'l .02 ¥ r 8 ¢ :

' pgpg H TCN ! word 3

I' LI N I S I I B B] :

H REL 1 word 4

: LU S N S I N N N N R I | 11 ¢ :

H First Address 7 word 5§

:J 1 LA I T N N N N] 1 :

H unused 1 word 6

: | I Lt % v ' ¥ ¥ 3 o o1 3y] :

H Length 1 word 7

L |
TCN The task code number of the task to be disconnected.
REL 000000 if the task resides in XVM memory

100000 if the task resides in PDP-11 memory

First PDP~11 byte address of the first location in memory

Address occupied by this task (the lowest address of the task
stack area). Only meaningful if the task resides in
PDP-11 memory - if the task resides in XVM memory this
word is ignored.

Length Total size (in bytes) of this task, including stack
area, control register, busy/idle switch, and program
code. Only meaningful if the task resides in PDP-11
memory -~ if the task resides in XVM memory this word
is ignored.

The disconnect task software directive verifies that the task to be
disconnected is on the active task list. If present on the list, the
task is disconnected - the active task list node is returned to the

System Design and Theory of Operation--PIREX

pool, the task's entry in the TEVADD table is cleared, and the task's
task request list is cleared. If the task resides in PDP-11 memory,

an attempt is made to free the memory space occupied by the task - if
the first free local memory address is the address immediately follow-
ing the storage area occupied by the task (as determined from the first
address and length arguments), the task's first address becomes the

new first free local memory address.

RESTRICTIONS:

1. If a task does not have an active task list node, it cannot
be disconnected. Therefore, once a task has been connected,
it cannot be disconnected until after a request has been
issued to it.

2. All requests which are on the task request list of a task
which is disconnected are forgotten. Such requests will never
complete; their request event variables (REVs) will never be
set to a non-zero value.

3. PDP-11 local memory resident tasks should only be disconnected
if they are the last (highest address) task in local memory.
If PDP-11 local memory resident tasks other than the last are
disconnected first, the memory space occupied by these tasks
will not be released. This will result in holes (of unusuable
memory) in the PDP-11's local memory.

4. Tasks should be disconnected in a reverse sequential order by
task code number. A task should not be disconnected if there
are any connected tasks with higher task code numbers.

5. The high order bit of the task code number (TCN) must be
clear.

Returned REV values:

1 Task successfully disconnected

2 Task successfully disconnected, but the (PDP-11 local)
memory occupied by this task could not be released.

~-300 Invalid ALV value, the task may or may not have been dis-
connected, its memory may or may not have been released.

-600 Task to be disconnected is not on the active task list (i.e.,
node not present)

3.6.2 Connect Task Directive

The connect task software directive instructs PIREX to add a new task
to the system. Once a task has been connected to PIREX, the XVM and/or

other tasks may issue requests (task control blocks) to it. The format

System Design and Theory of Operation-—PIREX

of the task control block for the connect task software directive is

as follows:

,15 8,7 2,

1 v 1

H ATA H ALV 7 word &

: 18 1t t 31 : LI S B N B :

H FCN H 281 7 word 1

: | U S B N O I] 11t :

4 REV v word 2

: 1.1 U I B N : | S N N S R] :

' gg1 H TCN ' word 3

: 1.1 I A S T N S N A | | :

H REL ' word 4

:4Ll 11 ') 3 Yoo 1 L I :

H unused v word 5

:4LI DI S U N S O A T B] 1_ :

H Entry Point 7 word 6

: LI SOV LN SR N N N | 1 1 1 :

H Length y word 7

: 5 8 1 ' ¥ 9 : L I N N :

H unused i Priority v word 1g

L N N N]) 1 ¢ 1t @
TCN The new task's task code number (TCN)
REL 000000 if the new task resides in XVM memory.

100000 if the new task resides in PDP-11 memory.

Entry Address of the new task's entry point - i.e., the
Point first location of the task's program code. This

address is a PDP-11 byte address if the new task
resides in PDP-11 memory, a XVM word address if the
new task resides in XVM memory.

Length Total size (in bytes) of the memory space occupied by
this task, including stack area, control register,
busy/idle switch, and program code. Only meaningful
if the task resides in PDP-11 memory - if the task re-
sides in XVM memory this is ignored.

Priority The task's priority *408.

The connect task directive enters the new task start address {appro-
priately relocated if the new task resides in XVM memory) into the
TEVADD table. The directive does not actually create an active task
list node for the new task; this occurs only when the first request
is issued to the new task. The directive clears the new task's busy/
idle switch (sets the task in idle state) and empties the new task's
task request list. The new task priority is prlaced in the LEVEL
table. If the new task resides in PDP-11 memory, PIREX updates its
memory usage information by adding the size of the new task to the

first free local memory address.

System Degign and Theory of Operation-—PIREX

RESTRICTIONS:

1.

Returned

1
-300

The task code number must not be in use (correspond to any
currently connected or prermanently installed task) at the
time this directive is issued.

The task code number must have been provided for when PIREX
was assembled. As distributed by DEC, PIREX provides for
task code numbers O8 through 138 inclusive.

The high order bit of the task code number must be clear.

If the task resides in PDP-11 memory, the first address it
occupies must be the first free local memory address, as
returned by the core status report software directive.

If the task resides in XVM memory, it must reside entirely
within the area addressable by the PDP-11's 28K addressing
range.

Tasks should be connected in sequential order by task code
numbers. Temporary tasks (tasks which will subsequently be
disconnected) should always be connected to a task code

number one higher than that obtained via the core status
report software directive.

REV values:

Task successfully connected

Invalid ALV value. Task has been connected.

3.6.3 Core Status Report Directive

The core

status report software directive returns information regarding

PDP-11 local memory and task code number usage in PIREX. The format of

the task

control block for the core status report software directive is

as follows:

[
5]
©
~

R

1 1 \J
T L) 1
H ATA H ALV 1 word @
: LI OO S U S N { I N I A S B :
' FCN ' 291 ' word 1
: L DR S A S W BN N N N N PR N | "
' REV 1 word 2
: LI I IO I N U NN SN N T O N N :
! gg2 ! TCN ! word 3
: L S S N S T N N N R NN N N) :
! Local Memory Size v word 4
: $ v v v s v v ¥ N VOYOY N oyo¥ :
H First Free Address ! word 5
: 18 8 v v ¢ vy oy v oy 1o 1y 3 I'
H unused v word 6
: | IR O S N TS S TN N O B NN N AN :
H Number of Free Words v word 7
1]

System Design and Theory of Operation-—--PIREX

TCN Set to the highest currently connected task code
number in PIREX.

Local The amount of local memory in the PDP-11 UNICHANNEL.
Memory
Size
First Set to the PDP-11 byte address of the first free
Free (unoccupied) address in local memory.
Address
Number of Set to the number of unused words in PDP-11 local
Free memory. Equal to ((Local memory size in bytes) -
Words (First free address))/2.

RESTRICTIONS:

1. The core status report software directive has no restrictions.
However, the restrictions (especially those regarding order
of use of memory and task code numbers) on the connect and
disconnect software directives must be adhered to in order to
have valid information returned by the core status report.

Returned REV values:

1 Successful completion
=300 Invalid ALV value. No information returned.

=500 No free PDP-11 memory. No information returned.

3.6.4 Error Status Report Directive

The error status report software directive returns information regard-
ing device and/or spooler errors which have occurred since the last
time this directive was issued. The format of the task control block
for the error status software directive is as follows:

15 8,7 2,
E ATA H ALV ! word @
: | SO L TR S N A) 'l .5 v v 8 1 3 :
H FCN H 2081 v word 1
: | . | y 0 3 v v 5 0 9 0 v ¢ 1y :
' REV 1 word 2
__ ¢ ¢ 3 v v £ ¢ 8 3 v vy ¥ VPV
1] 1] 1
H g3 ! unused y word 3
: | R R N N N IO NN NS SO SUWS DN SO N L:
H Returned ! word 4
:,I Error ;
! Information v werd n
] \

v 3 ¢t v v v v v v 0V 0 F t

System Design and Theory of Operation-—-PIREX

The error status report software directive copies error status infor-
mation from the DEVST table onto the requestor's task control block,
then clears the DEVST table to store new error information. The error
information returned consists of a series of three word blocks, one
per PIREX task. As distributed by DEC, eleven such blocks will be re-
turned - one for each permanent task (excluding the clock task) plus
two more for spare or temporary tasks. The number of these blocks re-
turned may change, however, if users alter the number of tasks (espec-
ially permanent tasks) in PIREX. The format of each of these three
word information blocks is as follows:

W15 8,7 ﬂ:

¥

4 Task Name v word @
: Lt 1 2 ' r ¢’ ' 1_98 ¢t 9 1 :

H unused--zero ! word 1
: 1 vt 3 ' 3. 3 %' | S T :

H SPLERR t DEVERR 1 word 2
v _ ¥y v v 7 ¢t ¢ ¥ T _§ ¢ ¥ § 330

Task Name A three character (.SIXBT) mnemonic for the task

to which the error information applies.

DEVERR Device error code for device associated with this
task.
SPLERR Spooler error code for this task.

The mnemonics for the tasks and the order in which the blocks for the
various tasks appear are as follows:

MNEMONIC TASKS
EST "Stop Task" task
ESD Software directive task
DKU RK (Cartridge) disk driver
DTU DECTAPE driver
LPU Line Printer driver
CDU Card reader driver
GRU XY (Plotter) driver
ESP Spooler
LVU LV11l printer/plotter driver

—-—— spare--no mnemonic

—— spare--no mnemonic

System Design and Theory of Operation——-PIREX

RESTRICTIONS: none
Returned REV values:

1 Successful completion.

=300 Invalid ALV value. Information has been returned.
3.6.5 Spooler Status Report Directive

The spooler status report software directive returns information regard-
ing spooler status and devices present in PIREX. The format of the

task control block for the spooler status report software directive is
as follows:

:15 8:7 ﬁ:
H ATA H ALV 7y word g
: LN S S | : LI N I) l'
4 FCN H 291 Vv word 1
: LI N N S P A} LIS S I T 1 :
H REV v word 2
: S S N A LA N N | :
H gp4a T unused ! word 3
:] 1 1 ! LA 1 L L] 1 1 1 ! 1 :
H SPOLSW v word 4
: | I S S N A N N N N LI N) ;
H DEVARE v word 5
: !] 1 ! L] L 1 1 L 1) 1 1] 1 :
H DEVSPL v word 6
L} !] 1 L] 1 1 1 1t 1 1 1 1 1] :
! SPUNIT ' word 7
. 1 1] 1] 1 1] 1] 1 1 L] 1.

SPOLSW, SPUNIT, DEVARE, and DEVSPL are four locations (within PIREX)
in which information is kept concerning spooler status and which devices
have been assembled into PIREX. The spooler status report software
directive merely copies the contents of SPOLSW, SPUNIT, DEVARE, and
DEVSPL into the task control block. Three of these words consist of

a number of one-bit flags. If the bit is set (1) the corresponding
condition is asserted: the device driver is present, spoolable, or
busy; the activity is enabled. If the bit is clear (0) the opposite
condition applies: the device driver is absent, non-spoolable, or
idle, the activity is disabled. The exact format of these three words
is as follows:

15 8.7 ﬂl
¥ ' H H
v ' H ,
SPCOLEW: S SN ’ux'lu'se'd' L A% T5 4]
fﬂb busy
CD busy
XY busy

despooling enabled
spooling enabled
both spooling ang despooling enabled
spoocler connected to PIREX

System Design and Theory of Operation--—PIREX

:15 8|7 pl
L]]
DEVARE: ! H H
LA AN P
, [XY driver present
CD driver present
LP driver present
RK driver present
95 . 8,7 ¢=
DEVSPL: | *: unused H
1] 'l' .1 v 1 & 1 3 1 9 12

m.*lr

XY spoolable
CD spoolable
LP spoolable
unused

SPUNIT is the RK unit onto which the spooler is currently (or was pre-

viously) spooling data.
RESTRICTIONS:

1. DEVSPL and SPOLSW contain zero until after the first request
has been issued to the spooler.

Returned REV value:

1 Successful completion.

-300 Invalid ALV value. Information has been returned.
3.6.6 PIREX MOVE Directive
NOTE

This directive commonly is used to transfer
information between common and local memory

The PIREX MOVE directive moves information from one place in the

PDP-11's address space to another place in its address space. (The
address space is composed of both Local-11 and Common Memory.) The
format of the task control block for the PIREX MOVE directive is as

follows:

System Design and Theory of Operation--PIREX

15 8 7 g
)
ATA ' ALV
1 1 1]] 1 1 : 1 1] 1 L] 1
FLN ! 241
1 [}) 1 | 1 [}] 1]] 1]
REV
1 1 1 1 1 1 1 : 1) 1 1 1
285 7
1

L) L] 1 1 1]] L] 1 1]

FROM LOCATION
1 L]

] 1 L]] 1 1] L]

TO LOCATION
| S S T T R T I

] 1 1 L] 1] 1]

WORDS TO MOVE
L]] L]

From Location

To Location

Words to Move

word @
word 1
word 2
word 3
word 4
word 5

word 6

PDP-11 byte address of beginning of information

to be moved.

PDP-11 byte address of a new starting location

for information.

The number of words to move.

CHAPTER

4

TASK DEVELOPMENT

4.1 INTRODUCTION

This chapter discusses in detail the procedure for developing a task

and for installing it into the PIREX software system. The development

of tasks in the UC15 system normally begins by the determination of

the function to be performed by the task. Once the basic function of

the task has been determined and designed, the user can integrate it

into the UCl1l5 system. The following summary describes the steps nec-

essary to accomplish this:

1. Determine the priority level

at which the task will execute.

2. Design one or more appropriate TCB formats.

3. Assign a Task Code Number to

the task.

4. Enter appropriate information into the various PIREX lists

and tables.

5. Design and code the requesting program. This is the program

which issues requests to the

6. Design and code the task.

task.

7. Assemble all programs and test.

The remaining sections describe these

4.2 PRIORITY LEVEL DETERMINATION

The selection of a priority level for
based upon its function. If the task
priority should be selected. If the
tine, a background priority should be

4.2.1 Device Priorities

The device priorities are 7 (highest)

steps in detail.

a newly developed task must be
is a device driver, a device
task is a data manipulation rou-

chosen.

through 4 (lowest).

® Priority 7 must be reserved for certain PIREX routines and
should not be used as a task priority. (Certain short

4-1

Task Development

instructions sequences require priority level 7 protection
but a general use of priority 7 must be avoided.)

e Priority 6 should be used only if interaction with the CR11
Card Reader can be avoided. If the CR11 is in use, excessive
IOPSUC CDU 74 errors (card column lost) will occur if this
level is used by another task executing in parallel.

e Priorities 4 and 5 can be used in an unrestricted manner.

There are three types of priorities to consider when selecting the
priority of a device driver.

1. The actual device hardware priority N.

2. The priority stored in the trap vector for the device (its
new PS) must be priority 7 to allow an uninterrupted context
switch.

3. The priority at which the task will execute after the context
switch (R.SAVE). This should be N (the above constraints
must be considered before deciding that it will be N). This
priority is set in the LEVEL table (see Section 3.3.6).

4.2.2 Background Task Priorities

The standard UCl5 PDP-11 computer does not differentiate between the
software priorities 0 through 3. All software priorities are inter-
ruptable by any device operating at any device priority. These soft-
ware priorities, while treated by the hardware as the same, are not
treated by PIREX as identical. The background task's position in the
Active Task List (the list to schedule the next task to run) is based
upon its priority (as indicated in the LEVEL Table). Thus a priority
2 task is always selected for execution before a priority 1 task.

It should always be remembered that the ATL is built dynamically and
is composed of only active tasks. Thus a task's actual ability to
execute depends both on its priority and on what other tasks of equal
or greater priority are actually available to execute (active). Tasks

of the same priority are run on a first come-first serve basis.

4.3 TCB FORMAT AND LOCATION

The design of new Task Control Blocks (TCBs) must be governed by sev-

eral constraints:

Task Development

1. Certain "fixed" items of information must be present.
2. There may be a size constraint depending upon source of the TCB.

3. TCBs issued by the XVM have a location constraint.

The first three TCB words have a fixed format (see Section 3.2.5).
The remainder of the TCB should be as follows:

1. Control words should be allocated to fixed pre-defined loca-
tions.

2. Data words should be blocked into the location following the
control words.

3. The TCB size should be kept constant for ease of core allo-
cation.

Location and size constraints are interrelated:

1. 1If the TCB is for a task executing under PIREX in PDP-11
Local Memory, there is no location constraint. The TCB size
must be kept small enough so that the TCB does not overflow
into common memory.

2. If the TCB is for a PDP-11 task executing in Common Memory,
it must be positioned so that it is:

a. present entirely in Common memory (not XVM Local
Memory, and

b. not overlaying any of the XVM monitor resident code.

These constraints actually apply to any PDP-11 Code or data
located beyond PDP-11 Local Memory.

3. If the TCB is for an XVM/RSX routine, it must be located in
a task partition or common area that is within the Common
Memory.

4. Since the specification of absolute core location is difficult
in XVM/DOS, the TCB placement problem is somewhat more com-—
plex. The standard XVM/DOS system has seven TCBs assembled
into the resident monitor. These include TCBs for RK Disk,
XY1l Plotter, CR1l1l Card Reader and LP11/LV11/LSl1 Printer.

In addition there are three spare TCBs of various sizes. The
user developing his own UNICHANNEL handler should take advant-
age of these spare TCBs. .SCOM+100 (location 200, in XVM
memory) points to a table of pointers to each of %hese TCBs.
The user should select the one closest to his size requirement.
(See the XVM/DOS Systems Manual.)

4.4 TASK CODE NUMBER DETERMINATION

Task code numbers are composed of two fields. Bits 6 through 0 are

used to contain the actual task code number. This is the number used

Task Development

when searching tables and lists ordered by TCN. In the DEC-supplied
system, these numbers range from 0 through 138. Bit 7 is used in TCBs
to determine if the task is spooled. If bit 7 = 1, the task is not
spooled. If bit 7 = 0, the TCBs for the task are routed to the spooler
if the spooler is enabled. (There must then be a spooler module pre-
pared to handle TCBs for that particular task (see Chapter 5).)

Task codes 11, 12, and 13 are spare task codes in the DEC-supplied
system. They are used in increasing order. The highest task code
position must not be used for a permanent task because MAC11 requires
this slot for its use as a temporary task (a task that is connected

and disconnected at run time).
4.5 UPDATING LISTS AND TABLES

The installation of a new task requires placing entries into the various

tables and lists. There are two cases:

1. the installation of a new task into a current spare task entry.

2. the installation of a new task into a new entry (by expanding
the tables).

For each of these two cases there are two types of task entries:

1. permanent tasks

2. temporary tasks

A permanent task is one that is assembled into the PIREX binary. 1Its

actual starting address and priority level are known.

A temporary task is one that is dynamically connected to and discon-
nected from PIREX. Its starting address is dependent upon its place-
ment in memory. (Temporary tasks must be written in Position Inde-

pendent Code - see MACll Assembler Language Manual.)

Chapter 3 describes the format of each table entry.

4.5.1 Temporary Task Installation - Existing Spare Entry

To install a Temporary Task into an Existing unused Task Entry, TCN

118, 128, or 138, simply use the CONNECT and DISCONNECT directives.

No new table space and no new table entries are required.

4-4

Task Development

4.5.2 Permanent Task Installation - Existing Spare Entry

To install a Permanent Task into an Existing unused Task Entry, TCN 11
or 12 perform the following:

1. Update the LEVEL table entry for that TCN with the task's
priority (see Section 3.3.6).

2. Update the TEVADD Table entry for that TCN with the task's
starting address (see Section 3.3.7).

3. Optionally update the interrupt vector table if the task is a
device driver task (see Section 3.3.9).

4.5.3 Temporary Task - New Entry

To install a Temporary Task into a new Temporary Task Entry (i.e., to
expand the table to accommodate a new Temporary Task) perform the
following:

1. Add an entry to the ATLNP Table (see Section 3.3.1.2).

2. Add an entry to the LISTHD Table (see Section 3.3.3).

3. Add an entry to the LEVEL Table (use ".BYTE 0" as the priority
value since this is a Temporary Task Entry and the actual
task priority will be filled in by the connect directive).

4. Add an entry to the DEVST Table (see Section 3.3.5).1

5. Add an entry to the CLTABL (see Section 3.3.4).

6. Add an entry to the TEVADD Table (use ".WORD 0" as the entry,
since this is a Temporary Task entry that will be filled in

by the CONNECT directive).

7. Add an entry in the SENDI1 Table (see Section 3.3.8).

PIREX transfers, upon request, the entire DEVST Table to the XVM/DOS
monitor. The XVM/DOS resident monitor can accommodate a maximum of

5 additional DEVST entries beyond the current 13._. Expansion beyond
208 entries would require reassembly of the XVM/BOS resident monitor.

Task Development

4.5.4 Permanent Task Installation - New Entry

For a new Permanent Task, repeat the procedure in paragraph 4.5.3, for
a new Temporary Task, with the following changes:

1., Step 3 is changed to: Place the task's priority in the new
LEVEL Table entry (see Section 3.3.6).

2, Step 6 is changed to: Place the task's starting address in
the new TEVADD entry (see Section 3.3.7).

3. Optionally update the interrupt vector table if the task is
a device driver task (see Section 3.3.9).

4.6 CONSTRUCTING DEVICE HANDLERS

This section describes how to construct device handlers for XVM/DOS and
XVM/RSX. Additional information on construction of a PDP-11 requesting
task is provided.

4.6.1 Constructing a XVM/DOS UNICHANNEIL Device Handler

The following description of how to construct a handler for the XVM/DOS
monitor does not discuss those topics related to all XVM/DOS handlers
both traditional and UNICHANNEL. General issues pertaining to all
XVM/DOS device handlers can be found in the XVM/DOS Systems Manual. The
UNICHANNEL Line Printer handler is used as a descriptive example (see
Figure 4-1). Several constants should be defined in a UNICHANNEL hand-
ler source file before the executable code (see Figure 4-1, lines

48-55, 71-73). These constants include:

Task Development

2 LPU, Xv# V1A 122
5 CAL ENTRANCE

6 INTERRUFT SERVICE
7 ERROK ROUTINE

8 «INIT FUNCTIUN

9 -WRITE FUNCTION
15 +CLOSE FUNCTION
16 «WALT FUNCTLUN
17 INITIALIZATION CODE AND TEMPURARIES
PAGE 1 Leu, 122
1 »SYSIL < «TITLE LPU, >,< §22>
*G «DEFIN ,8YSI0,FR,BK
*G FROXVM V1AEBK
*G JENDM
G »SYSID < «PITLE LPU, >,< 122>
PAGE 2 Leu, 122 LPU, XVM V1A 122
*G +FPITLE LPU, XVM V1A 122
2 /
3 /COPYRIGHT (C) 1975
4 /DIGLIAL EQUIPMENT CORPURATION, MAYNARD, MASS.
5 /
6 /THIS SOFTWARE IS5 FURNISHED UNDER A LICENSE FUR USE JNLY
7 /0N A SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH
8 /THE INCLUSION OF THE AHOVE COPYRIGHT NOTICE., THIS
9 /SOFTwWARE, UR ANY OTHER CUPIES [HEREQF, MAY NOT BE PRQ=-
10 /VIDED UR UTHERWISE MADE AVAILABLE TO ANY OTHER PERSIN
11 /EXCEPT FUR USE On SUCH SYSTEM AND TO ONE #wHU AGREES [0
12 /THLSE LICENSE TERMS. TITLE TU AND OWNERSHIP UF THE
13 /SUFTWARE SHALL AT ALL TIMES REMAIN ln DEC,
14 /
15 /THE INFURMATION IN THIS DUCUMENT IS SUBJECT TO CHANGE
16 /WITHOUT NOTICE AND SHUULD wOT BE CUNSTRUED AS A COM=
17 /MITMENT BY D1GIfAL EQUIPMENT CORPORATION,
18 /
19 /DEC ASSUMES NO RESPUNSIBILITY FOR THE USE OR RELIABILITY
20 /0F 1TS SOFTWARE UN EWULPMENT WHICH 1S NUT SUPPLIED BY DEC.
21 +EJECT
PAGE 3 LpPU, 122 LPU, X¥M ViA 122
22 /
23 / EDET LEGENG,
24 /
25 / 120 05=JUN=75 (RCH#M) MAKE XVM CHANGES,
26 /121 05=JUN=T75 (RCHM) TAKE OUT NUN=ESSENTIAL CONDITIONALS,
27 /122 22=JUL=75 (RCHM) TEST STATE OF UC15 ENABLED B8IT,
28 /
29 JEJECT

Figure 4-1
XVM LPll DOS Handler

110

Leu,

LPU.

U0voo
00001
ouGL2

00003

U0u04
00005
0000Us
00007
Uo01v
00011
0ud12
00013
00014
00015
00016
00017
00020
00021
00022
00023
0024
00028
00026
00027
00030
[VIVERY

AXTXTALXLLTTTILXTTLTXLITXLELITLIKX

122

QU0
QU006

706141
706001
7006006

706144

00ul100
0uuUl04
000002
000003
440000
440000
000137

0000u72

0u000s

122

040549
040541
440541

600547

220541
440541
bUUb33
34v634
040V11
740040
TS RVE)
T41000
600024
440541
60Ul 34
6004060
buul3g
600024
60U136
b0US0E
Touuus
60vu73
Teuue?
e0U073
760012
00073

Ley,

> > >

E

Fo S

TPVPXTPEPTITXTTXTTLITEPIPEITXXXTD

Task Development

XVM V1A 122

/deM. WOLEBERG (S, ROOT)

/LPU.==10PS LINE PRINTER HANDLER FOR LP11 LINE PRINTER

/CALLING SEWUENCE:

/ CAL + JDAT SLOT (9-17)

/ FUNCTIUN

/ N ARGS,
NURMAL REFURN

/BITS 12-13 GF

/ 00= UNDEFINED.

/ Uiz B0 CULUMNS.
/ 10= 120 COLUMNS,
/ 11= 132 CULUMNS.

/ASSEMBLY PARAMETERS:

AHERE n IS A FUNCLLON OF

"FUNCTION"

«SCOM+4 INDICATE PRINTER,

/ NUFF=1 LINHIBITS AUYOMATIC END OF PAGE FURM FEED

FECNT CAN BE OEFINED AS NUMBER OF LINES PER PAGE [F

NOF¥ UNDEF.

/

/ DEFLNE FFCNT [N !:OCTAL!!

/ 1K FFCNT AND NUFF oUTH UNDEF,, 58 LINES PER PAGE 1S DEFAULT,
/

APILVL=2

APISLT=56

/

LSSF=APLILVL*¥20+700101
S10A=706001
LIUR=TU6U06

CAPI=APILVL*20+706104
/

«SCOM=100
SC.MOD=,5C0M+4
S5C.UC15=2
SMED=3
10X=182
SET=[87
EXERRS=,5C0OM+37
/

«1FUND FFCNT
FURMS=72

+ENDC

«IFUND NOSPL
LEVCOD=4

+ENDC

.GLOBL LPA.

ENTRANCE

+IETLE CAL ENTRANCE

/SKIP ON DATA ACCEPTED 8Y THE POP11
/CLEAR "DONE"™ FLAG ANO LOAD REG FOUR
/ THE PDP1i,

/CLEAR FLAG

/(RCHM=122) ,SCUM MOOE REGISTER.
/(RCHM=122) BIT wITHIN SC.MUD TO BE TESTED.

/USED TO SET SWITCHES TO NON=ZEROQ,

/COVE FOR LP DRIVER IN PIREX

LPA,. DAC LPCALP /5AVE CAL PUINIER,
DAC LPARGP /AND ARGUMENT POINTER,
10X LPARGP /POUINIS 10 wORD 2 « FUNTTION CODE.
/
/ FLRST T1ME THRU GU CAL InLll, COUE IN LBF
/
NEW JMP Inir /FIRST TIME IHRU DO SEfUP CAL
/ /AND SET=UP TCB AND BUFFER, OVERWRITE
/ /JUMP 4lIH NU=0P
/
LAC* LPARGP
iDx LPARGP /PUINTS TU wURD 3 =~ BUFFER ADDRESS,
AND (7717 /STRIP OFF UNIT NUMBER,.
TAD (JMP LTABL=1 /OLSPATCH U PROCESS FUNCTIUN.
DAC 2!
XX
LTABL Jhip LP1N /1 = L1NIT -
SKP /2 = (FSTA1,.RENAM,.DLETE =« IGNORE
JMP LPEROb /3 = .SEEK = ERROR
1bXx LPARGP /4 = LENTER = IGNURE
JMP LPNEXT /5 = CLEAR = IGNURE
JMP uLPCLUS /6 = ,CLOSE
JMP LPNEXT /7 = MTAPE = [GNORE
JMp LPERUG /10 = JREAD = ERRUR,
JMP LPWRIT /11 = LWRITE
JMP LPWALT /12 = JwAIT UR wAITR
LPEROb LAw L] /ILLEGAL HANDLER FUNCTION,
JME SETERR
10PS67 LAw o7 /(RCHM=120) FETCH MEMORY BUOUNDS ERROR MESSAGE,
JMP SETERR /(RCHM=120) GU PRINT ERROR,
10PS12 LAw 12 /(RCHM=122) FEICH TERMINAL 1/0 ERROR MESSAGE,
JMP SETERR /(RCHM=122) GO PRINT ERROUR,

Figure 4-1 (Cont.)
XVM LPll DOS Handler

Task Development

PAGE b LPu. 122 INTERRUPT SERVICE
111 +TITLE INTERRUPT SERVICE
112 /
113 /LPU, INTERRUPT SERVICE
114 0V032 R 600042 R LPINT Jup LPPIC /PIC EwIRY, JUMP Tu CUDE
115 00033 R 040560 R DAC LPAC /SAVE LNTERRUPTED AC
116 00034 R 200032 R LAC LPINT /GET INTERRUPTEV PC
117 00035 R U4ub6T R DAC LPouT /5AVE FUR COUMMON EXIT
118 00036 R 200035 R LAC (JMP LPPIC /RESTURE PIC ENTRY
119 00037 R 040032 R DAC LPINT
120 00040 R 200Ub3b R LAC (NQP /4E DON'T NEED ION IN CUMMUN EXIT
121 00041 R 600046 R JMP LPICM /JOIN CUMMON CODE
122 /
123 00042 R 040566 R Leeic DAC LPAC /PIC CODE, SAV AC
124 00043 R 220637 R LAC* 44 /GET INTERRUPTED PC
1256 00044 R 040567 R DAC LPOUT /SAVE
126 00045 R 200040 R LAC (10N /NEED IwTEKRUPT Un INST. IN COMMON COUDE
127 00046 R 040056 R LPiCH LAC LPISw
128 00047 R 706144 A [of Y3 /CLEAR FLAG, NUW IN CUMMUN CIDE
129 00050 R 220553 R LAC»* LPEV /EVENT VARIABLE FRUM PIREX
130 00051 R 742010 A RTL /PDP=11 (MINUS) BIT U JUR AZO
131 00052 R 743120 A SPALRTR /+ IS 0K
132 00053 R bu0UbL R Jmp LPLIERR /ERROR, GU LDOK
133 00054 R 140544 R LPIRT DZm LPUND /CLEAR UNDERWAY FLAG
134 00055 KR 200566 R LPIRTYl LAC LPAC /RESTORE AC
135 00056 R 7400640 A LPISw HLT /10N QR NOP
136 Q0057 R 703344 A DBR
137 00060 R 620567 R Jup* LPOUT
138 /
139 /
140 00061 R 500641 R LPIERK AND (177777 /KEEP REAL 16 BLTS FRUM PDP=1}
141 00062 R 540042 R SAUL (177001 /CODE FRUM OUT OF NODES IN PIREX
142 00063 R 600UbL R JMp RETRY /JUST TRY AGAIN, LEAVING LPUND SET
143 00064 R 340043 R TAD (600000 /MAKE « SUMBER FUR [OPS
144 00065 R 6UUUT3 R JMp SETERR /TREAL AS REGULAR 10PS ERRUR
145 / /NUTE [HAL THIS SHOULDN'T HAPPER.
146 /
147 /
148 V0066 R 200550 R RETRY LAC LPTICH /TCB ADDRESS
149 00067 R 700001 A S1UA
150 00070 R 6UL0B/ R JMP =1 /
151 00071 R 7060006 A LIUR /THIS MAGLIC SH1PS TCB ADDR, [0 PDP=11
152 00072 R buv055 R JMP LPIRTY /EXII FRUM INTERRUPT
153 /
154 /

PAGE 7 LPU. 122 ERROR ROUTINE
155 #TIFLE ERRUR RUUTINE
156 /
187 00073 R U4ULU2 R SETERR DAC ERRwUA4
1538 00074 R 740000 a ERLOOP AUk /'JMP LPTRY' IF 1UPS 4 ERRUR,
159 00075 R 200102 R LAC ERRNUA
160 00076 R 120044 R ERQUT JMS* (EXERRS
161 00077 R o0U0O74 R JMP ERLUJP
162 00100 R 777777 A Law =i
163 00101 R 142025 & «SLABE 'Lput
164 00102 R 00UV00 A ERRNUM O /HULDS ERRUR NUMBER FIR REPEAT,

Figure 4-~1 (Cont.)
XVM LP11l DOS Handler

PAGE

165
166
167
168
169
170
171
172
173
i74
175
176
177
178
179
180
184
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

8

LPu,

00103
00104
00105
001ve
00107
00110
00111
00112
00113
00114
00115
00116
00117
00120
00121
00122
00123

00124
00128
00120
00127
Q0130
00131
00132

00133

00134
00135

ZTTIHTEXTXTXTXTLZXTELTETODIDXX

TXTXEXTLX

x

122

220645
5006406
741200
600030
440541
200555
060541
440541
200542
040543
220540
500647
340546
540546
741000
200636
040545

100455
100524
140562
750030
060551
723013
GbubS2

100631

703344
620541

TEPXTXDITXETLTIXTTLPITX

TP TP IVX XL

x

A

Task Development

«INIT FUNCIIOUN

«TITLE I#IT FUNCT1OW
/
/elNLT
/
LPIN LAC* (SC.MUD) /(RCHM=122) CHECK MODE REGISTIER FROM SCOM,
AND (S8C.UC15) /(RCHM=122) FUR UC1S5 ENABLED.
SnNA /(RCHM=~122) I5 I717?
JMP 10PS12 /(RCHM=122) NU, GO PRINT ERROR,
IDX LPARGP /(RCHM=122)
LAC BUFS1Z /36(10) FOR 80 COLS; 56(10) FUR 132 cOLS,
DAC* LPARGP /RETURN TU USER,
10X LPARGP /NOw PUINTS TO RETURN.
LacC PAGS1Z /LF CUUNTER
DAC PAGCHT .
LAC* LPCALP /DUES LxIl INHIBIT AUTU FURMS FEED
AND (4000 /THIS 1S INHIBIT BIT
TAD FFFF /FFFF ASBEMBLED AS NOP FOR NOFF, ISZ IF NOT
SAD FEFF /SKIP IF INIT INHIBITS FF
SKP /INIT DOESN'T LNHIBIT, USE ASSEMBLED VALUE
LAC (NOP /INIT INHIBITS IT, USE NOP
DAC FFSwW /THLIS SW1TCH XTT'ED BY FORMS CONTROL
/ /SECTLIOW IN PUTCH SUBRUUTIINE
JHS RESETL /RESET LAB AND LINE #10I'H CUUNTERS
Jams LPLUCK /CHECK wP BUSY
oM cup /SAY A FF UCCURRED
CLALIAC /CUUNT UF UNE BYTE FUR HEADER
DACH* LPBUF /HEADER
AAC 13 /FORM FEED
DAC* LPBUFD /FUR BUFFER
«1FUND NOFF /D0 ONLY TIF NUFF NOT DEFINED
Jus LPSET /IHIS SENDS REQ. TU PLP=i1
+ENDC
/
/NORMAL CAL EX1T
/
LPNEXT DBR
JMP# LPARGP

Figure 4-1 (Cont.)
XVM LP11l DOS Handler

Task Development

PAGE 9 LPU., 122 «WRITE FUNCTION

202 «TITLE ,wRITE FUNCTION

203 /

204 7/ JWRLTE

205 /

206 00136 R 10US24 R LPWR1IT JMS LPIOCK /PRINTER BUSY?

207 00137 R 220540 R LAC* LPCALP /GET THE DATA MOWE FROM THE USER CAL.
208 00140 R 500650 R AND (1000 /MAKE SKP=NUP IN MIX

209 00141 R 240651 R XOR (SKkp

210 00142 R v4USe5 K LAC LERS

211 00143 R 220541 R LACH* LPARGP /USER dUFFER ADORESS,

212 00144 R 440541 R IDX LPARGP /NOW PUINTS TO WORD COUNT

213 00145 R 040%61 R DAC ICHAR /SAVE PUINTER TO BUFFER HEADER

214 00146 R 723002 A AAC 2 /MAKE X12 POINT TO DATA NOT HEADER

215 00147 R 040570 R DAC X12 /GETTER PUINTER

216 00150 K 50ub52 R AND (700000) /(RCHM=120) EXTRANC EXIEND ADDRESSING BIPS FROM BUFFER ADDR3ESS,
217 00151 R 740200 A SZa /(RCHM=120) AKE ANY SET?

218 00152 R 600026 R JMP TUPS67 /(RCHM=120) YES, ISSUE [OUPS67 ERRUR MESSAGE.
219 /

220 / SET UP LIMIT OF INPUT BUFFER S1ZE TO PREVENT DATA OVERRUN

221 / FOR BUTH 10PS ASCII AND IMAGE ASCII

222 /

223 00153 R 777000 A LAw 17000 /GET PALR COUNTI FRUM LEFT HALF

224 0V154 R 520561 R AND# ICHAR

225 00155 R 742030 A SwHA /BRING 'O RIGHT. PAIR CUUNT INCLUDES HEADER
226 / /PAIR CUUNT, WE ISZ BEFURE LOOP SO THAT'S
227 / /UK, IUPS NDW SET XCPT CMALIAC

228 00156 R 400565 R XCT MIX /SKIP I¥ ASCIL, NUT IF [MAGE

229 00157 R 751001 A SKPICLAICHA /IMAGE =1 IM AT, SKIP, =1 BECAUSE wE ISZ FIRST
230 00160 R 741031 A SKPICMALIAC /10PS CUMPLEMENTED TO CORRECT VALUE

231 00161 R 360541 R TAD¥ LPARGP /IMAGE ADD IN TUTAL WORD COUNT, INCL

232 / /iw0 WORDS FOKR HEADER, WE [S8Z BEFOKE LOUP,
233 00162 R 040554 K DAC TEmMP1 /INTU TONTROLLER, BUTH MODES

234 00163 R 440541 R 182 LPARGP /MUVE ARG POLNTER TO EXIT

235 00164 R 200552 R LAC LPBUFD /PULNIER TU UATA PURTIUN OF BUFFER

236 00168 R 040571 R DAC puTP /LUAD TJd CHARACTER PUTTER PUINTER

237 00166 R 200347 R Lac GETIN /1NIT. CHAK GETTER

238 00167 R 040344 R DAC GETSW

239 00170 R 200443 R LAC PUTIN /INIT CTnAR PUTTER

2490 00171 R v40441 R DAC PUTSW

241 00172 R 750000 A CLA ZLINIT QUIPUT BUFFER HEADER

242 00173 R 400565 R XCT MIxX /r0 0 LF LOPS, 400 FUR IMAGE

243 00174 R 200653 R LAC (400

244 00175 R 0bUSHL R DAC* LPBUF

245 00170 R 750001 A CLAICHA /COUNT OF | BLANK AS DEFUALT

246 / /FOR ZERQC LENGTH I0OPS LINE

247 V0177 R 060552 R DAC* LPBUFLD /IN FIRST DATA CHAR

248 /

249 / MAIN LOUP TO TRANSFER CHAR'S TO HANDLER BUFFER

250 /

251 00200 R 100332 R MALN JMS GETCH /CHARACTER GETTER, LEAVES IT 1IN AC

252 00201 R 741200 A SNA /SKIP UNLESS NULL CHAR

253 00202 R 600200 R JMP MAIN /nULL, E[GNORE

Figure 4-1 (Cont.)
XVM LP1l1l DOS Handler

PAGE

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

Leu,

00203
00204
00205
00206
00207
00210
00211
00212

00213
00214
00215
00216
00217

00220
u0221

00222

00223

00224
00225

V0220
uzZ27
V0230
00231
00232
00233
00234
00235
00230b
v0237
00240
00241
v0242
00243
00244
00245
00246

122

540654
600200
040561
723730
141300
600247
54u655
00u314

20U560
740100
bou220
Zvd656
10v400

750030
U4qubde2

20v563

744100

60V235
340057

750100
60u233
340057
100400
200057
340563
1004u0
14uUb03
20uS0]
luv4vo
440504
o0UZ44
711770
L ET-T
440557
600200
CIYVENYY

TTXPP»XTIT

T T TP X

T

ZAXXTXLIPTVITXITIXLXDX >

Task Development

«ARITE FUNZTIION

/IGNORE RUB=QUT

/MALN

/SAVE THAR THROUGH TESTING

/SEPARATE 'TEX[' CHAR'S FROM CONTROL CHAR'S
/SKIP UN REGULAR CHARS

/GU DO SPECIALS

/ALT MODE

/END UF LINE ON ALT MODE

THE LOGIC AT PUTCH fU 0O FORMS CUNFROL DUESN'T DO IMPLIED
THOSE LINES HAVING NO LEADING CONTROL CHAR,
WE HAVE TQO FAKE IT OUT BY LACING A LINE FEED UN SUCH LINESI?!

/00 UNLY IF FIRST CHAR OF LINE IS REGULAR
/SK1P 1F FIRST CHAR

/NUT FIRST CHAR, JUST COWEINUE

/HERE IS LINE FEED

/AND CALL T0 DU FORMS CONTROL

/SET FLAG SAYING A REAL CHAR SINCE A FF

/DU WE HAVE PENDING BLANKS/TABS TO SEND

NOTE BLANKC HAS MINUS CQUNT Ut CUNSECTIVE BLANKS/TABS
SINCE PDP=11 CONTRULLER PRINTS UNLY BLANKS

/SKLP LF ANY COLLECTED, TO PUT JUT BEFORE
/REAL CHAR's

/HUNE, PENDING, GO PUT QUT THE CHAR
/TOUGH, IF MURE THAW 127 COLLECTED, MUST
/PUT QUT I'wO COUNTS

/SKLP LF NRED I'WO COUNTS

/80, JUST PUT UUT COLLECTED COUNT

/EWU COUNIS, HERE 1S FLRST

/SET UP TU DO SECOND
/CUMMON CODE, LAST CUUNT FOK E1THER CASE

/CLEAR OUT BLANK CUUNTER

/GET BATK URIGINAL CHAR

/TQ QUIPUL BUFFER

/INCREYMENT TAB CUUNTER

/80T OVERFLUW, GO CHECK LINE COUNTER
/RESET [AB COUNTER

/HAVE Wi RUN OQUT UF LINE
/N0
/YES, GO FINISH UP, wITH END JF LINE

SAD (177
JMP MAIN
DAC TCHAR
AAC =40
5NALSPA
JMP HSPEC
SAD (135
JMp UCLPO3
/
/ SORRY ABOUT NE XT FIVE L NES,
/
/ LINE FEEDLS, 1.E.
/
/
LAC FIRST
SMA
Jme ot3
LAC (i2
JMS PUTCH
/
CLA!1AC
DAC cop
/
LAC BLANKC
/
/
/
/
SMAICLL
/
Jup HALINC
TAD (200
/
SMALCLA
Jmp MALND
TAD (200
JMS - PUTCH
LAC (200
MALIND TAD BLANKC
JMs PJTCH
MAINC Lik BLANAC
LAC I'CHAR
JMS PULICH
MALNK 182 rasc
Jmp MALNE
LAw =10
DAC rasc
MAINE 182 MAXC
Jmp AALN
Jmp ucLPo3
/

/ SPEC1AL CHARACIERS

Figure 4-1 (Cont.)
XVM LP11l DOS Handler

12

PAGE

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
in
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

11

LPU,

00247
00250
00251
00252
00253
00254
00255
00256
00257
00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272
00273
00274
00275
00276
00277
00300
00301
00302
00303
00304
00305
00306
00307
00310
00311
00312
00313

00314
00315
V03le
00317
00320
00321
00322
00323
00324
00325
00320
00327

z;u:txzxzxxxz:cxxx:uxz:x::xxx::xxzxx::zzx:c:axw

b i - o R A A b o A i

122

750201
600V254
340563
040563
600240
200561
540660
600300
5406061
600314
540662
600275
54Ub63
600270
54v6b64
600272
2006506
100400
60020V
200656
100400
600267
1004595
200661
600270
200564
340563
040563
200564
740031
340557
040557
740100
bouldlsg
7771170
U4050¢
600200

200061
400565
100400
100455
440562
220551
500065
740200
60u330
400565
60v134
460551

x:u:-z:»x:n:bxx-xxxx:;.x:xzz:xx:rxz:cxz::xz:c:c:c:cx;x:a

P Sl Tl A - sl R i T ol vl o]

Task Development

+WRITE FUNCTION

/
MSPEC

MSPEC2

MSPECS
MSPEC3
MSPEC4

MCR

MTAB

/
UCLPO3

UCLPO4

SZAICLALICHA

Jup
TAD
DAC
JMp
LAC
SAD
JMP
SAD
JMP
SAD
JMP
SAD
Jdmp
SAD
Jme
LAC
JMS
Jup
LAC
JmS
JMP
JMS
LAC
JMp
LAC
TAD
DAC
LAC
CmAlIAC
TAD
DaC
SMA
JMP
LAw
DAC
JMP

LAC
XC1
JMs
BLE
182
LACH
AND
SZA
JMp
XCT
JMp
Isz»

MSPEC2
BLANKC
BLANKC
AALNK
TCHAR
(11
Mras
(15
uCLpPO3
(20
“4CR
(14
MYSPEC3
(21
MSPEC4
(12
PUTCH
MAIN
{12
PUTCH
15PECS
RESETL
{15
MSPEC3
rasc
BLANKC
BLANKC
fasc

HAXC
4AXC

UCLPO3
~-10
rasc
MALN

(15
MIX
PUTCH
RESETL
cuap
LPBUF
(377

ucLpoS
ALX
LPNEXT
LPsur

/5K1P 1F IT I8 A BLANK
/NOPE, CHECK FOR OTHER THLWGS
/ADD DJE [U BLANK CUUNTER (1S 4InUS COUNTER)

/JUIN LINE AND IAB CUNIROL SECTIUN
/GET BACK URIGINAL CHAR

/18 Ir A I'AB

/YUP, GO DO IT

/CARRIAGE RETURN

/END UF LINE ON CARRIAGE RETURN
/FURTRAW OTS UVERPRIWT, 00 AS CR

/FURM FERD

/JUSL PUL IT OUD, KUR NOw

/FORTRAN VUUBLE SPACE

/U0 AS 1a0 12's

/UEFAULT ON UNRECUGNIZED CONERDL CHAR, IS LINE FEED
/PLACE LN BUFFER

/G0 DQ NEXT

/FIRST OF TwD 12'S FOR THk 2%

/G0 DO THE SECOND 112

/NEw LINE, RESEI VARIUUS GUYS
/CARRIAGE RETURN

/PUT CTHAR AND LOOP

/GET REMALNING COUNY FOUR TAB

ZAND ADD TU CUMULATIVE BLANK CJUNT

/AND 1D LINE CHECKER

/SK1IP LF SOWME LINE LEFT
/NONE LEFI, FINISH uP LINE

/RESET [AB COUNTER
/NEXT CHAR

/CARRIAGE RETURN
/PLACE 1IN BUFFER ONLY OW IMAGE!!!

/A BLANK LINE IS STILL A REAL ZHAR SINCE FF
/ZERO THAR COUNT??

/COUNT UNLY IN LOW 8 BITS

/SKIP LF ZERO CQUNT

/NON=ZERQ, JUST GU DO REGULAR

/IMAGE QR 10PS

/IMAGE DU NUTHING

/I0PS MAKE FAKE | CUUNT

/wE ARE DOING A BLANK LINE, AND ©

Figure 4-1 (Cont,)
XVM LP11 DOS Handler

PAGE

358
359
360
361
362
363
364
365
366
367
368
369
370
374
372
373
374
375
376
377
378
379
380
381
382
383
384
385
3ge
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

12

LPuU,

122

00330 R 100531 R
00331 R 600134 R

00332
00333
00334
00335

0uL3ie
00337
00340
00341
00342
00343

00344

00345
00346

00347

00350

00351
00352
00353
00354
00355
00356
00357
00360
00361
00362
00363

TXXTET

TLAXTLTXTXTXXTX

IV
400565
741000
620344

440554
741000
60U 329
2205170
44U870
U0 345

guouoo

500654
620332

00u351

100344

43u554
[JVEL-T.)
100455
ouUl320
220570
4405170
652000
640607
100u 344
640607
100344

xr x>

DL ITPX

x

TPXPrPAIBDIXLITX

Task Development

SWRITE FUNCTLION

/ /COUNT MAKES SPUOLER VERY ILL
UCLPOS JMS LPSET /SEND BUFFER TO PDP=11
JMP LPNEXT /CAL EXIT
/
/ CHARACTER UNPACKLWNG ROUTLINE
/
/
/ ITHLIS ROUTINE 'OWNS' THE M@
/
/
/ CHARACTEKS ARE OBTAINED FROM X12 POINTER, EACH CHAR
/ I8 RETURNED RIGHT JUSTIFIED IN THE AC
/ TEMP1 HAS A MINUS CUUNT UF [HE WORDS TO BE OBTAINED
/ FROM THE INPUT POINTER Xi2
/
GETCH 0
XCT LIRS /SKIP IF IT 1S ASCL1
S5KP
JMP* GETSHW /GETSwW IS POLNTER TO CORRECT ACTLION ON ONTHE
/ /CORRECT ONE OF THE FIVE POSSIBLE CHAR'S
/
/ NOw DU 1MAGE ¢ODE
/
182 LeEMpy
SKP /SKP 0N NOT THRU YET
JHP UCLPO4 /DUNE
LAC* X12
182 X2
JMp GETCM /FINLISH UP Lld COMMON
/
GE1Sw [/POINTER TU CURRECYT ACILUN, INIT'ED FROM GETIN
/ /FILLED BY JMS GETSW AFTER EATIH CHAR
GETCM AND (177 /COMMUN FINISH UP, STRIP X[RA BLTS
JMP¥ GETCH /0UT
/
GETIN GET1 ZINLT GETSwW IO POINT TO FIRST CHAR ACTION
/
/ INDIVIDULA CHARACTER ACTIOW
/
GETQ NI GELSW /AFTER 5TH CHAR, PULNT BACK TD FIRST
/
GeT1 182 rEemet /UUT OF PAIRS?
Jup o ¥3 /CONTINUE IF OK
JMS RESETL /END OF LINE RESET SONWE STUFF
JMP ucLpPo4
LAC* X12 /F1RST wORD OF PAIR
182 X12
LiQ /INTO M3 FOR SHLIFTING
LLS 7
Jus GETSW /DONE, LEAVE POLINTER FUR SECOND CHAR
GET2 LLS 7 /SECOND CHAR
JMS GETSW /LEAVING PUINTER FUR THIRD

Figure 4-1 (Cont.)
XVM LPll DOS Handler

PAGE

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

13

LPU,

00364
00305
00366
00367
V0370
00371
Ve372
00373
00374
VY35
00376
00377

00490
00401
00402
0u403
V04U4
00405
00406
00407
00410
00411

00412
00413
V0414
00415
00416
00417
00420
00421
0422
00423
00424
00425
00426
00427

TXZXTXTXTLXIXTXX

LTZLZXTLLTXTTLTT T

122

640604
040344
220570
440570
8532000
200344
640603
100344
040607
1u0344
bduveo07
600350

[MHIVOI]
500065
540656
090412
540663
600427
44U560
740000
460551
620441

200562
740200
600424
220552
540663
620400
200661
400505
620400
60U4qUb
20Ub506
400545
60v434

2uU542

TPTPALBTPXT P

TXPXT T X 0E >

ZDVITLEDTIXLET X T

Task Development

«WRILIE FUNCTIOW

GET3

LLS
DAC
LAC*
182
LM
LAC
LLS
JMS
LLs
JMS
LLs
Jmup

4 /THE HALF=AND=HALF CHAR
GELSW /VERY [EMPORARY

X12 /CAN'T EdD IN MIDDLE UF PAIR
X12

/SECOND WORD TU SHIFTER
SETSw /BRING BACK FLIRST
3 /CUMPLEIE CHAR
GELISW /LEAVING PUINTER TU FUURTH AJTION
7
GELSW /LEAVING FUR 5
1

GETQ /BACK TJ 1UP FUR PUINTER TO §

/

/

/

/ CHARACTEK PUTILER FUOR POP=11
/

/

TwWO CHAR'S PER WURD FORMAT, FIRST CHAR IS RIGHT JUSTIFIED, SECOND

1S PLACED LIMMEDIATELY ABGVE F1RST, LEAVING TUP Tw) BITS OF WORD
UNUSED, CHAR (S DELEVERD TU US Iwn AC, LNLT PUTSW BY DAC'ING CONTENTS
OF PUTIN INTO IT. RUUTINE CUUNTS THE QUTPUT CHARS IN LBF

THE PDP=11 ASSUMES LINES HAVE A LF IN BEGINWNING AND SR AT END

S0 IHIS ROU

urcs

PUTY

PUTZ

/
PUTLF

PUTW

PUTHF

0

AND
SAD
Jup
SAD
Jme
182
NOP
152+
JMP R

Lac
SZA
Jup
LAC*
SAD
JMb»
LAC
XCT
JMP ¥
JMP
LAC
XC1
Jup
LAC

TIVE REMOVES ANY LEADING LF.

/

/

/

/

/ THIS ROUTINE ALSU HANDLES FORM FEED PAGE CONTRUL
/

/

/

/

P

(377 /STRIP [0 EIGHT BiTS

(12 /SPECIAL CASE #1, LINE FEED
PUTLF /60 DO IT
(14 /SPECIAL CASE #2, FORM FEED

PUTFF /G0 DO 1T
FLRST /BUMP FLRSY TIME THRU SATICH
/1N CASE SKIPS, wE DON'T NEED 1T HERE
LPBUF /CUUNT AN DUTPUT CHAR
PUTSW /DISPAICH TO FIRST OR SECOND CHAR ACTLON

cap /HAS A REAL CHAR UCCURRED SINZE FF?
/SKIP [F NO REAL CHAR

Pulw /GU DO REGULAR

LPBUFD /LF WE ALREADY HAVE A FF

(14 /IN BUFFER OUT, DUN'T NEED A CR

PUICH

(15 /LEAD AIIH CR, SU PDP=11 DOESN'T PUT OUN AUTUMATIC LF
MIX /BUT DO NOTHING FUR IMAGE MODE

PUTCH

PUTY /GO0 REAJOIN

(12 /GET BACK LINE FEED

FFSw /182 OR WOP FOR COUNT OF FF PER PAGE
PUTLFR /NU FORM FEED NOW
PAGSLZ /FORM FEED, RESET PAGE COUNTER

Figure 4-1 (Cont.)
XVM LP11 DOS Handler

PAGE

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
433
494
495
496
497
4938

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
14
518
Sie
517
514
519
520

14

15

LPU,

00430
0043
00432
00433
00434
00435
v0436
00437
V044U
004431
00442

00443

00444
00445
004406

00447
00450
00451
00452
00453
00454

00455
00456
vUes7
00460
Qudol
00462
00463
0464
duded

LPU,

004b6
00467
V0470
00471
00472
00473
00474
voa7s

VudTe
Quai7
00500
00501
00502
oosu3
00504
VU505

A XTATXTXIXIXTXX XX

T XX

T XXX LX

XXLALDITXITXZIX

TALXLLITIXT

TXTXTXETXED

122

U4u543
140562
200663
o0u410
40056%
600400
440560
600410
620400
vouuuo
620400

Uou4gs

JRVET D
UbUb 11
1uv44t

740030
740020
26ub 71
ueuS 71
44u571
oLU444

Vuouuo
IRERRN
0405060
177770
vdibo4d
200556
U4ubs7
14Ubo03
D2U455

122

1uusbed
140564
440502
60USU 3
150030
Uous51!
200bbo
UbUDS2

1uys31
10u455
703344
620540
174177
7117177
U4uUs92
600134

Task Development

«WRITE FuNCTLION

R DAC PAGCNT

R DZM cup

R Lac (14

R JHp PUTZ

R PUTLFR XCT Mix

R JMP PJIY

R 182 FIRST

R JmMp PUTZ

R JMP* PUTCH

A PUTSwW 0

R Jup* PUTCH
/

R PUTIN PUT1
/

R PUTG JMS PULSW

] PUTI DAC* PLUTP

R’ Jus PUTSw
/

A pur?2 CLLISwWHA

A RAR

R XUR* PUTP

R DAC* pure

R 182 PUTP

R Jup PUTG
/
/ UUTLWE O RESET LINE
/

A RESETIL 0

A LAw -1

R DAC FLRST

A LAw ~10

[DAC rasc

R LAC LINLIM

3 OAC MAXC

R UZM BLANVKC

R JMP* RESETL
/

«CLOSE FunlTIun

/FPLAG SAYING FF OCCURRED,

/FORe FEED CODE

/G0 COUNT CHAR, AND PLACE IT

/SKIP JN I0PS ASCII

/1MAGE, ACTUALLY PLACE LF

/ASCILL, 1S IT F1RST THRU?

/NOT FLRST, DO LF

/FIRST IIME, JUST RETURN

/INIT'ED A3 PULL, FILLED LATER 8Y JMS PUTSW
/DONE, RETURN

/START AT FIRST CHAR

/LEAVE PUINTER FUR FIRST AFTER SECOND

/F1RST CHARACTER ACI11ON, PLAZE RIGHT JUSTIFIED
/LEAVING POINIER FUOR SECOND

/PUT CHAR 1IN RIGHT PLACE
/PUT HALVES TOGETHER
/80TH I~ BUFFER

/MOVE POINTER

/G0 TELL PUISw [HAT PUTL IS NEXT

AnD TAQd COUNTRS

/SET FIKST CHAR OF LINE REMEMBERER
/SET TAB COUNIR
/SET JP MAX PER LINE COUNTER

/RESE[SPACE AND TAB CUUNTER

/
/
/. CLOSE
/

LPCLUS

TXI XPXXNXX

LPTALX

LPCLSw
LPTLDON

TREF BT PFRX

«CLUSE FUNCTLION

»TLITLE

JMS LPLUCK
DZm cur
182 LPCLSwW
JMP LeCcLow
CLA!LAC

DAC* LPBUF
LAC (b4al4
DAC* LPBUKD
JMS LESET
JMS RESETL
UBR

JmpP ¥ LPCALP
1777177

LAw =1

DAC LPCLSW
JMP LPNEXT

/CHECK 1/0 UNDERWAY,
/SAY A FF OCTURRED
/777777 IN AC If HAVEN'T BEEN THRU CLOSE CODE,
/00NE,
/3PUQLER REQUIRES FF,CR AS CLJSE
/JUST GLIVE FF IO DRIVER, HUWEVER
/THIS {8 FF,CR IN POP=11
/F1IRST DAIA wUORD PUINTER
/IHIS 4EANS ALWAYS A F On CLOSE!!Y
/SEND BUFFER TU PDP=11
/RESET THE WURLD

/HANG ON CAL.

/=1 = JCLOSE NUI DONE,
/INITIALLZE (CLUSE LNDICTATOR
/EX1T,

Figure 4-1 (Cont.)
XVM LPll DOS Handler

Task Development

PAGE 16 LPU, 122 «WALIT FUNCTION

521 «T1TLE .A4AIT FUNCTION

522 /

523 /ewAIT OR ,wALTR

524 /

525 00506 R 220540 R LPwWAIT LACH LPCALP

526 00507 R 500050 R AND (1000

527 00510 R 741400 A SNA /BIT 8 = 1 FUR WAITR

528 00511 R 600522 R Jup LPWAT1 /+WALT = GO HANG ON CAL,
529 00512 R 200052 R LAC (100000 /LINK, ETC,

530 00513 R 5H0US4u R AND LPCALP .

531 00514 R 040540 K DAC LPCALP

532 00515 R 220541 R LAC* LPARGP /15=81T BUSY ADDRESS,

533 00516 R 500067 K AnD (1

534 U0517 R 24udb4¢u R XOR LPCALP

535 V0520 R 040540 R DAC LPCALP

530 00521 R 44U541 R IDx uP ARGP

537 00522 R 100524 R LPwAT1 JMS LPIUCK /CHECK 1/0 UNDERWAY.

538 00523 R 6U0134 R Jisp LPNEXT /0K = RETURN,

53% /

540 /CHETK FOR 1/0 UVDERWAY

541 /

542 /LPUND 0 wHEN FREE, NUw0 wHEJ 8USY

543 /

544 00524 R UULUUD A LPLIOCK 0

545 00525 R 2uU544 R LAC LPUND /0 = NO ACTIVI1TY,

546 00526 R 74140u A ShA

547 00527 R 620524 v Jupb* LPIUCK /NO 1/0 UNDERWAY,

548 VU530 R 0005uU K Jup LPCALX /HANG 0N CAL TIL NOT BUSY.
549 /

550 / SEIUP AND OUTPUL TU PRINTER,

551 /

552 00531 R 000000 A LPSET 0

553 00532 R 200550 R LAC LPICB /SEND ICB PUINTER TOU PDP=-11

554 00533 R 706001 A SIVA /MAKE SURE ITS ABLE D GET IT
555 V0534 R bOUD3IZ R JMp =1 /NOTE THAT TH1S IS PROIECTED SINCE
556 / THE LIUR WILL BE ISSUED DIRECTLY
557 / AFTER THE S10A (FREE INSTRUCTION).
558 V0535 R 7ubule A L1UR

559 00536 R 040544 R DAC LPUND /5L 1/0 BUSY FLAG,

560 00537 K bzud3l R JuP* LPSETL

Figure 4-1 (Cont.)
XVM LP11l DOS Handler

PAGE

561
562
563
564
565
566
567
568
569
570
571
572
573
578
579
580
581
582
583
584
585
586
587
688
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

17

LPU.

005490
00541
00542
00543
00544

00545
00546

00547
00550
00551
00652
00553
00554
00555
00556
00557
00560
Qu561
00562
00563
00564
00565

00566
00567
00570
00571
00572
00573
00574
00575
00576
00577
00600
00601

00602
00603
00604
00605
00606
00607

R

XXX DVIXAPDIDEXITX

ELEDTDDRVXXXD

122

000000
000000
1177086
777700
711772

440543
440543

200636
040003
220645
7142020
740020
500670
741200
340670
340624
040624
22u624
040556
440624
220624
040555

220657
740030
040554
220554
040550
040554
72300¢
040553
723002
040564
723005
040552

200671
060554
440554
200672
060554
440554

e r >

T T

TXETXRDVLXTEXTPIPPLXXT

TPXTPrOPFXTXLX PR

DTAOADDE

Task Development

INITLALLIZATION CODE AND TEMPURARIES

/
LPCALP
LPARGP
PAGS12Z
PAGCNT
LPUND
/

/

FFSwW
FFFE

INLT
LPTICB
LPBUF
LPBUFL
LPEV
TEMP1
BUFSI1Z
LINLIM
MAXC
FIRST
ICHAR
coe
BLANKC
TABC
MIX

/

/ NOW
/

LPAC
LpooT
X12
PUTP

~

/ MAKE
/

+TITLE

0

0
=FORMS
«~FORMS
-6

+ IFUND
184
182
<ENDC
LAC
DAC
LAC*
RTR
RAR
AND
SNA
TAD
TAD
DAC
LAC*
DAC
182
LAC*
DAC

INITLALLIZATLION TODE AND TEMPORARIES

NOFF
PAGCNT
PAGCNT

(dop
NEW

(.85C0M+4

(6

(6
LBFTP
LBFTP
LBFTP
LENLIM
LBFTP
LBFIP
BUFSIZ

/POINTER 0 CAL ADDR
/POINTER ARGUMENTS UF CAL
/ASSEMBLED LINES PER PAGE
/COUNT [HE LINES HERE
/USFREE, +=BUSY, ==ERROR
/COUNTS UP TO INITAL 0 BELOW

/ACTION FOR FURMS CONTROL, NEMORY
/FFSW LUOADED INTO HERE
/ARITE OVER JUMP TO HERE
/PREVENT RE«ENTRY
/GT PRINTER LINE WIDLH

/HOVE 10 'e' POSLITIUN
/STRIP GARBAGE, LITERAL 6

/TREAT 0 (UNDEFINED) AS 132 COLUMNI??!
/POINTER TO CONSTAWTS

/ULINE WIDTH

/BUFFER SIZE

SET UP POINTERS TU BUFFER AND TCB LOC'S

LAC*
IAC
DAC
LAC*
DAC
DAC
AAC
DAC
AAC
DAC
AAC
DAC

1c8

LAC
DAC*
IsZ
LAC
DAC¥*
182

(.SCUM+100 /POINTER TO TABLE OF POLINTERS

/UUR POINTER IN TABLE +1

TEMPL

TEMP1 /PGIWTER TO TCB

LPICB

TEMPY /POINTER TO FILL LOCATIUNS

2 /MAKE POINTER TU EVENT VARIABLE
LPEV

2 /MAKE PUINTER TO TCB POINTER
rasc /TO BUFFER ADDR

S /MAKE PUINTER TU FIRST DATA WORD
LPBUFD

(APISLT*400+APILVL

TEMPL

TEMP1

(DEVCOD /PIREX CODE FOR LP DRIEVER
TEMPL

TEMPL /ZERO THRU F1RST BUFFER LOC

Figure 4-~1 (Cont.)
XVM LP1ll DOS Handler

18

PAGE

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

PAGE

18

19

LPU.

00610
00611
00612
006t
00614
00615
00616
00647
00620
00621
V0622
00623

00624
00625
00626
00627
00630
00631
00632

00633
00634
00635
00636
00637
0ub40
00644
00642
00643
00644
00645
00646
00647
00650
00651
00652
00653
00654
006585
00656
00657
00660
0ub6}
00662
0ub63
00664
00665
00666
00667
00670

LePuy,

TDVXVXXRNXITXT

XTI LX

e A - Sl = ol Sl S o B i ol S A i A ol T ol A A A B i s o -

122

160554
440544
600607
200554
060504
040551
10v455
V000586
Qouo1e
706141
000032
600003

000023
777060
000044
777010
Uoulb4
771574
000070
000v00
0177117
600011
600042
740000
000100
700042
1717711
177001
6000V0
ovut 37
000104
0o0gvo2
0040v0
0V1000
741000
700000
000400
000177
000135
oovul2
Q04200
000011
000015
00uv20
0V0014
00uQ21
000377
006414
0777111
Uu0ude

122

00671 R 027002
00672 R UO00VO04
S1ZE=00673

TTPPPrPXLXDITESD

P F SRR R R EEEE AR RN R R A T

A
A

Task Development

INITIALIZATION CODE AND TEMPORARIES

DZms TEMPL
IsZ LPUND
JMP 3
LAC TEMP1
OAC* TasC
DAC LPBUF
JMS RESETL
CAL APISLT
16

LSSF

LPINT

JMp NEW

LBFTP =1

/THIS POINTS TO BUFFER

/TO LOCATION IN TCB THAT NEEDS

/AND A POINTER FOR US

/RESET LINE AND TAB CUUNTRS

/ESSUE SETUP CAL TU ESTABLISH INTERRUPTS

/WHEwW, DUNE

/POINTER TU SIZE TABLE

INITIALIZALLON CUODE AND TEMPORARIES

*L
*

NO ERROR LINES

Figure 4-1 (Cont.)
XVM LPll DOS Handler

PAGE

APILVL
APISLT
BLANKC

BUFSIZ
CAPI
cop
DEVCOD
ERLOOP
ERQUT
ERRNUM
EXERRS
FFFE
FFSW
FIRST
FORMS
GETCH
GETCM
GETIN
GETQ
GETSHW

GET1
GET2
GET3
GET4
GET5
1DX
INIT
Iops12
10PS67
LBFTP
LINLIM
LIOR
LBAC
LPARGP

LPA,
LPBUF
LPBUFD
LPCALP

LPCALX
LPCLON
LPCLOS
LPCLSHW
LPERO®
LPEV
LPICM
LPIERR
LPIN
LPINT
LPIOCK

20 Lpu,

000002
000056
00563

00555
706144
00562
000004
00074
00076
00102
000137
00546
00545
00560
000072
00332
00345
00347
00350
00344

00351
00362
00364
00374
00376
440000
00547
00030
00026
00624
00556
706006
00566
00541

00000
00551
00552
00540

00500
00503
00460
00502
00024
00553
00046
00061
00103
00032
00524

CROSS REFERENCE

4%
49%
277
590%
174
55%
189
72%
158%
160%
157
63%
181
185
268
bo¥
251
386
237
397%
238
417
393
40y*
410%
416%
420%
61%
85
109%
107%
586
494
53%
115
80
201
11
191
193
79
535
515%
507
100
SUe
97
129
121
132
95
114x
188

51
381
292

SB4¥
128
275
75%
161

159
160
182
459
443
69%
373%
390%
393x%
421
376
419
399%

L3
d7ux*
172
214
587
585%
i51
123

211
79%
244
235
179
So3x
544
518%
504%
517%
102
S582%
127%
140%
16G%
116
206

59
624
294

592

349
614

164%

572%
571%
468
56%
391

3gygx

90

588
589
558
134

89
212

350
247
207

519
105+%
603

119
504

611

309

448

576%
575%
491
566

397

98

590

S96%
231
356

451
516

627
537

Task Development

310

S87%

407

173

591

98
234

445

511
525

544%

505

409

170

631%

173
532
509

581%
530

547

334

S89%

411

212

175
536

580%
607
531

496

415

176
564%

622

534

Figure 4-1 (Cont.)
XVM LP1l1l DOS Handler

4-20

Task Development

PAGE 21 Leu, CRUSS REFERENCE

LPIRT 00054 133%
LPIRT1 00055 134% 152
LPIsSwW 00056 127 135%

LPNEXT 00134 99 101 200% 55 360 520 538
Leour 00567 117 125 137 597%
LPPIZ 00042 114 118 123%

LPSET 00531 195 359 513 552% 560
LPTCB 00550 148 553 579% 600

LPUND 00544 133 545 559 S67% 618
LPWAIT 00506 104 525%

LPWAT1 00522 528 537«

LPARIT 00136 103 206%

LSSF 706141 51% 620

LTABL 00012 92 95

MAIN 00200 251+ 253 255 302 325 343
MAINC 00235 284 T294%

MAIND 00233 288 292%

MAINE 00244 298 3uls

MAINK 00240 297% 311

MAXC 00557 301 337 338 495 586%

MCR 00275 318 329%

MIX 00565 210 228 242 346 354 374 455 466
592%

MSPEC 00247 259 307%
MSPEC2 00254 308 312%
MSPEC3 00270 320 324x 331
MSPEC4 00272 322 326%
MSPECS 00267 323% 328

MTAB 00300 314 332+¢

NEW 00003 85% 579 628
PAGCNT 00543 178 462 566% 571 572
PAGS1Z 00542 177 461 565%

PUTCH 00400 272 290 293 296 324 327 347 437%
. 453 456 470 472

PUTFF 00427 442 401 ¥

PUTIN 00443 239 474x

PUTLF 00412 44y 448%

PUTLFR 00434 460 406%

PUTP 00571 236 477 482 483 484 599%

PUTQ 00444 470% 485

PUTSW 0044} 240 446 471% 476 478

PUTW 00424 450 454%

PUTY 00406 443» 457 467

PUTZ 00410 445+% 465 469

PUTL 00445 474 477%

PUT2 00447 460%

RESETL 00455 187 329 348 401 489% 497 514 623

RETRY 00066 142 148

SC.M0D 000104 58% 169

SC.UC1 000002 59% 17¢

SET 440000 62%

SETERR 00073 100 108 110 144 157%

SIOA 706001 2% 149 554

Figure 4-1 (Cont.)
XVM LP11 DOS Handler

PAGE
TABC

TCHAR
TEMP1

UcLPO3
uCLPO4
UCLPOS
X12
%005
$RELES
SVERSN
XV
+CLEAR
+CLOSE
.DLETE
+<ENTER
«EXIT
+FSTAT
GET
«GTBUF
«GVBUF
«INIT
+«MED
«MTAPE
«OVRLA
+PUT
«RAND
«READ
+RENAM
+RTRAN
«SCOM
«SEEK
«SYSID
+TIMER
« TRAN
+USER
+WALT
+WAITR
+HWRITE

22 LPu,
00564

00561
00554

00314
00320
00330
00570
000001
000001
000001
000001
MACRQ
MACRO
MACRO
MACRO
MACRO
MACRD
MACRO
MACRO
MACRO
MACRO
000003
MACRO
MACRO
MACRU
MACRO
MACRO
MACRO
MACRO
000100
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

Task Development

CROSS REFERENCE
297 3900 332 335 342 493 591% 605
621
213 224 256 295 312 588%
233 381 399 583% 598 599 601 612
613 015 616 617 620
261 303 316 340 345%
349% 383 402
353 359%
215 384 385 403 404 412 413 598%

499

165
60%

57% S5y 63 580 596

521

202

Figure 4-1 (Cont.)
XVM LP11l DOS Handler

APILVL

APISLT

DEVICE
SKIP

SI0oA
LIOR

CAPI

DEVCOD

4.6.1.1

Task Development

The API level at which PIREX should interrupt the XVM; this
is used in TCBs and in the definition of CAPT. APILVL should
indicate API level 0, 1, 2, or 3.1

The API slot to which PIREX should issue interrupts; used in
TCBs and in the CONNECT/DISCONNECT software directives.

In this case LSSF, one of the four possible UC15 skips. This
skip is determined by which API level is chosen.

SKIP = APILVL*20 + 706101

The skip is used in the standard setup interrupts CAL (Figure
4-1, lines 624-628),

Skip if PDP-11 can accept a TCBP mnemonic; (706001) .
Issue TCBP mnemonic; (706006).

Clear interrupt flag mnemonic; set to APILVL*20 + 706104,
used in interrupt service routine.

The device code as defined in PIREX: wused in TCBs.

NOTE

The conditional use of the spooled bit
(PDP-11 bit 7) (Figure 4-1, lines 71-76).

Initialization - The CAL entry of an XVM/DOS handler must

have a once only section of code that:

1.

4.6.1.2

Sets up a pointer to one of the reserved TCB areas in the
XVM/DOS monitor. This is done by locating a pointer to the
TCB area in the table pointed to by .SCOM+100 (Figure 4-1,
lines 596-600).

Computes pointers to the various locations within this TCB
area, such as the event variable (Figure 4-1, lines 601-607).

Constructs the constant fields within the TCB such as the
API RETURN and device code (Figure 4-1, lines 611-619).

Sets up a pointer to the data area in the TCB, which will be
used as a buffer (Figure 4-1, lines 620-622).

«INIT Function - The .INIT function of any XVM UNICHANNEL

handler should check to see if the UNICHANNEL is enabled by testing
bit 16 of .SCOM+4. 1If bit 16 is set, the UNTCHANNEL is enabled, or
else if bit 16 is not set, IOPS 12 (device error) should be issued.
(Figure 4-1, 1lines 169-172.)

1

Level 0 may be used, but is not recommended because it could hang the

XVM system if the interrupt occurred at the wrong time.

4-23

Task Development

4.6.1.3 Request Transmission - When issuing requests to a task from a
XVM program, the requesting program (e.g., a XVM I/0 handler) issues

the following sequence of instructions.

DZM EV /CLEAR EV IN TCB

LAC (TCB) /ADDRESS OF TCB IN AC

SIOA /MAKE SURE PDP-11 CAN ACCEPT REQUEST

JMP .-1 /WAIT FOR IT IF NOT

LIOR /ISSUE REQUEST TO THE PDP-11, THIS CAUSES A

LEVEL/7 INTERRUPT TO THE PDP-11 AND CONTROL
TRANSFERRED/TO THE LEVEL 7 HANDLER IN PIREX.

The instruction sequence which issues requests to tasks from the XVM
should have an identical format as shown above. These five instructions

are ordered in a way which:

1. Clears the évent variable (EV) before issuing the request.
2. Allows an interruptible sequence while waiting for the PDP-11.

3. Allows a non-interruptible sequence once the SIOA instruction
skips and the LIOR is issued.

This occurs because the XVM always allows a non-interruptible instruc-
tion following an IOT (in this case the SIOA). The SIOA and JMP .-1
sequence is interruptible immediately following the execution of

JMP .-1.

The LPSET routine is used by the line printer handler to perform the
request transmission and thus send data to the line printer (or line

printer spooler) task (see Figure 4-1, lines 551-560).

4,6.1.4 Interrupt Section -~ Result Reception - After receipt of a
request to PIREX, the PDP-11 will use the contents of the TCB to
schedule the referenced task.

Meanwhile, the requesting program can either:

1. Give up control and wait for an interrupt from the PDP-11 as
in the XVM/DOS line printer handler case or

Task Development

2. Test the EV until it goes non-zero. i.e.,
LAC EV
SNA
JMP ,-2

to determine completion of the request. The EV is automati-
cally set to a non-zero valEe by the referenced task when the
request has been completed.

Interrupts generated by the PDP-11 for the XVM are serviced by the

XVM in a fashion identical to regular XVM interrupts. As in a non-

API environment, a SAPI N (N = 0, 1, 2, or 3 depending on what API

level would have been used if the XVM had API) instruction tests for
the flag associated with the request. 1In an API environment, the
appropriate API trap address must be set up before the interrupt occurs.
When program control is transferred to the interrupt service routine,

a CAPI N instruction must be issued to clear the hardware flag assoc-

iated with the request.

After clearing this flag, the event variable should be tested to detect
an error condition (negative event variable). See Figure 4-1, lines
129-132,

If an error has occurred, the event variable should be tested for a
possible PIREX out-of-node condition (PIREX ran out of space to store
the request). If the error was an out-of-node error (EV = 177001) a
retry of the request should be attempted (see Figure 4-1, lines 148-152).

If the error was not an out-of-node error, an error message should be
sent to the user. The error code should be composed of the event vari-

able and a handler mnemonic such as LPU (Figure 4-1, lines 155-164).

1When interrupt returns are used, the EV is set to non-zero just
prior to the issuing of the interrupt.

Task Development

4.6.1.5 .READ and .WRITE Requests - Actual input and output is accom-
plished by using typical XVM/DOS handler code with the following excep-
tions:

1. The TCB is used as the data buffer1

2. The actual I/0 is done by calls to the TCB transmission
routine. 1In the example this is a call to LPSET
(Figure 4-1, line 359)

4.6.1.6 .CLOSE Function - If PIREX provides spooling services for the
device, there is a need to inform the device's spooler module that the
current job has completed so that the spooler is forced to process any
existing partially-filled buffers. The writer must insure that both

the XVM/DOS handler and the PIREX spooler module agree upon a conven-—
tion to inéicate this end-of-file. 1In the example, a form feed carriage
return (6414) acts as an end-of-file (Figure 4-1, lines 499-513).

4.6.2 PDP-11 Requesting Task

Tasks such as MACll may execute under control of the PIREX executive in
a background mode. Considerations such as TCB structure and event var-
iable checking are similar to those of the XVM/DOS handler.

When the requesting program is a PDP-11 task, it must issue the initi-
ate request macro (IREQ) in lieu of the 5 instruction sequence shown

for the XVM. (See section 4.6.2.) 1If the task being requested has

a higher priority than the current one issuing the request, it will
execute immediately; otherwise, control will return to the first instruc-
tion following the IREQ macro. IREQ is defined as follows:

.MACRO IREQ TCBP
MOV TCBP,R5

MOV #100000,R4
I0T

.BYTE 2,0

« ENDM

The #100000 in R4 is used by PIREX to identify a PDP-11 request.

1Depending on Driver task design the TCB need not be used as a data
buffer for NPR devices.

Task Development

A TCBP is a TCB pointer. If the requesting task desires a software
interrupt it should place the interrupt return address in the proper
entry of the "SEND 11" Table (see Section 3.3.8).

4.6.3 UNICHANNEL Device Handlers for XVM/RSX

The following description of how to write a UNICHANNEL deviceAhandler
for XVM/RSX does not discuss those topics pertaining to all iVM/RSX
I/0 handlers, see the chapter on Advanced Task Construction in the
XVM/ RSX System Manual.

4.6.3.1 Definition of Constants - Several constants are defined in a
UNICHANNEL handler's source file before any executable code (see
Figure 4-2, lines 67-80). These constants include:

APISLT The API slot to which PIREX issues interrupts; this is
used in TCBs and the CONNECT/DISCONNECT software
directives.

APILVL The API level at which PIREX interrupts the XVM; this
is used in the TCB and in definition of CAPI.
APILVL should indicate API level 1, 2, or 3.

DEVICE UNICHANNEL device skip equated to APILVL*20+706101.

SKIP

SIOA Mnemonic for "skip of PDP-11 can accept a TCBP";
706001.

LTIOR Mnemonic for "Issue TCBP"; 706006,

CAPI Clear interrupt flag mnemonic; set this to APILVL
*20+706104. It is used in the interrupt service
routine.

DEVCOD The device code as defined in PIREX; this is used in
TCBs.

4.6.3.2 Initialization - The handler initialization is located imme-
diately following these definitions (see Figure 4-2, lines 263—321).
During handler initialization, the PIREX device driver status must be
cleared and the event variable checked to see if the driver is function-
ing (see Figure 4-2, lines 288-305). Since it is not obvious to XVM/
RSX whether or not the driver is operational, a message should be
printed before the handler exits if the driver is not running under
PIREX.

2

Chevus

021

000055
000001
706121
706001
706006
706124

000005

PP PP

Task Development

CDseee CR15/UC15 CARD READER EDIT %020

/

/EDIT #021 4/22/75 SCR UC15 EOF CARD FIX

/ED1T %020 2/2/74 SCR CLEANUP

/EDLIT #019 SCR CR15 ERROR HANDLING; RRN SWITCH!
/EDIT #018 SCR FIX CDON HANDLING CR15 VERSION
/EDIT #017 SCR CLEANUP, !BOTH! DEVICES

/EDIT #016 SCHR MORE UCZ15 CODE

/EDIT #015 SCR START TO PUT IN UC1S CODE

/EDIT #0413 1~18=72

/EDIT #14 6w26=73

/COPYRIGHT 1973,

/CoeWe KEMP =w== W, A, DESIMONE,

DIGITAL EQUIPMENT CORP,,
————G, M,

4AYNARD, MASS.
COLE

/
/CR15 CARD READER CONTROL HANDLER TASK, THIS CONTRUL #1LL

/SUPPURT SURBAN AND VDOUCUMATLON READERS

/ CR15 CODE IS OUBIALNED wITH

/

/ TO OBTAIN UC15 CODE DEFINE UC15=0,
ADDITIONAL UC1S5 PARAMETERS:

/

/ DEFINE NUSPLs0 TO DISABLE SPUOLING FOR CARD READER.
/ 1F SPOOLER PACKAGE DOESN'T HAVE CARD READER ASSEMBLED IN FUR SPACE REASONS,
/ AN EQUATE FUR APILVL IS NECESSARY TO SET UP

NDO ASSEMBLY PPARAMETERS

FOR INSTANCE

/ 10T'S FOR CORRECT PRIDRITY LEVEL TO CLEAR PEREX REQUEST.
/ PRESENTLY LEVEL { 1S THE CARD READER ASSIGNMENT,

W A R N 1 N G H

28K TU THE PDP11. THUS,

1S EQUIVALENT TO 50000 OCTAL,
POP=11 MEMORY IS 12K,
40000 OCTAL,

NANNNNNNNNNNN

+IFDEF UC15

/

/
APISLT=55
APILVL=1
CRSI=APILVL#20+4706101
SI0A=706001
LIOR=706006
CAPI=APILVL#*20+706104
/

«IFUND NOSPL
DEVCOD=5

+ENDC

«IFDEF NOSPL
DEVCOD=205

«ENDC

Figure 4-2

!

IN ORDER FOR THE UC15 HANOLER TO FUNCTIUN PRUPERLY,
PDP11 MUST BE ABLE TU ACCESS OUR INTERNAL BUFFER

AND TCB'S, THIS MEANS THAT THEIR ADDRESS MUST HE LESS THAN
1F THE PDP=11 LOCAL MEMORY IS 8K,
TH1S HANDLER MUST RESIDE BELOw 20K IN PDPL5 CORE!! IHIS

SIMLILARLY ,
THE HANDLER MUST RESIDE BELOW

XVM CR1l1l XVM/RSX Handler

THE

IF THE LOCAL

Task Development

PAGE 3 CDsose 021 CDeese CR15/UC15 CARD READER EDIT #020
80 +ENDC
81 /
82 /EDIT 14 ADDS ASSEMBLY PARAMETER ERRLUN TO SPECIFY LOGLZAL untr
83 / FOR ALL ERRUR MESSAGES, LHE LS SET TO 3 IF USED INTERACTIVELY
84 4 MOST OF THE TIME OR TU 100 WHEN USED WIIH PHASE
8S / II1 BATCH, LUN 100 1S DRFINED TO BE THE BAICH JPERATOR DEVICE,
86 /
87 «IFUND ERRLUN
88 ERRLUN=100
89 <ENDC
90 /THIS 1S AN I0PS ASCIL UNLY HAMDLER TASK.,
91 /IT CAN BE ASSEMBLED TO READ 029 OR 026 IBM KEYPUNCHED CARDS,
92 /DEFINE DEC026 TO READ 026 PUNCHED CARDS,
93 /DEC026 UNDEFINED TO READ 029 PUNCHED CARDS,
94 /
95 /
96 /
97 / THE FOLLOWING QUEUE 1/0 DIRECIIVES ARE IMPLEMENLED
98 /
99 / ceB 3600 HANDLER INFORMATION (HINF)
100 / EvVa
101 / LUN
102 /
103 / FOR HINF THE FOLLOWING INFORMATION 1S RETURNED IN THE EV
104 /
105 / BIT o0 UNUSED
106 / BIT 1 =} INPUT DEVICE
107 / BIT 2 =0 NOT QUTPUT DEVICE
108 / BIT 3 =0 NOT FILE=ORIENTED
109 / BITS 4=~11 UNIT NUMBER 'ZERO!'
110 / BITS 12=17 DEVICE CODE = 7 CARD READER
111 /
112 /
113 / cea 2400 ATTACH CARD READER
114 / EvA
115 / LUN
116 /
117 / CPB 2500 VETACH CARD READER
118 / EVA
119 / LUN
120 /
121 / ceB 2600 READ CARD
122 /(1) EVA
123 / (2) LUN
124 /7 (3) MODE
125 /7 (4) 8UFF
126 /7 (S) SIZE
127 4
128 /IF A REQUEST CANNOT BE QUEUED, THE FOLLUWING EVENT VARIABLE
129 /VALUES ARE RETURNED:
130 /
131 / =101 == IJDICATED LUN DUES NOT EXITS,
PAGE 4 CDeses 021 CD.sc. CR15/UC15 CARD READER EDIT #020
132 / =102 == INDICATED LUN IS NUT ASSIGNED TO PHYSIZAL OEVICE,
133 / =103 == HANDLER TASK [S NOT CORE RESIDENT,
134 / =777 == NODE FOR REQUEST QUEUE nOT AVAILABLE,
135 /
136 /
137 /IF THE QUEUED I/0 REWUEST CANNJI BE SUCCESSFULLY DEQUEUED,
138 /THE FOLLOWING EVENT VARIABLE VALUES AKE RETURNEDS
139 /
140 / =7 == ILLEGAL DATA MOLE,
141 / =6 == UNIMPLEMENI£D FUNCTION,
142 / =24 == LUN REASSIGNED WwHILE ATTACH/DETACH REQUEST IN QUEUE,
143 / =30 == OUT OF PARTITION TRANSFER (NORMAL MODE) .
144 / =203 == CAL NOT TASK ISSUED,
145 /
146 /
147 «EJECT

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

Task Development

PAGE 5 CDeuss 021 CDevss CR15/UCE5 CARD READER EDIT %020
148 /
149 / *%%%% CONSTANTS *¥xxx
150 /
151 000012 A Xt12=12 /AUTO=INDEXREG., 12
152 000013 A X13=13 /AUTO=INDEXREG, 13
153 000101 A Ri=101 /RE=ENTRANT REG. 1
154 000102 A R2=2102 /RE=ENTRANT REG, 2
155 000103 A R3%103 /RE=ENTRANT REG, 3
156 000104 A R4=104 /RE=ENTRANT REG, 4
157 000107 A NADD=107 /NODE AODITIUN ROUTINE ENTRY POINT
158 000123 A SNAM=123 /NAME SCAN ROUTINE ENTRY 'POINT
159 000240 A POOL=240 /LISTHEAD FUR PUOL OF EMPTY NODES
160 000252 A PLVL=252 /LISTHEAD FOR PHYSICAL DEVICE LIST
161 000325 A ALAD=325 /ATTACH LUN & DEVICE ENIRY POQINT
162 000332 A DLAD=332 /DETACH LUN & ODEVICE ENTRY POIN{
163 000337 A DQRQ=337 /DE=QUEUE REWUEST ENTRY POINT
164 000342 A VAJXZ342 /VERIFY AND ADJUST 1/0 PARAMS,
165 000345 A 10CD=345 /DECREMENT TRANSFERS PENDING CuuUnT,
166 000361 A DMTQ=361 /DE=QUEUE 1/0 REQUEST (FOR ABORT[ING),
167 000010 A D,TG=10 /POUSITION OF TRIGKR EVENT VARLABLE IN PDVL NODE
168 /
169 «+IFUND UC1S
170 /
171 CHWC=22 /WC DCH ADDRESS,
172 CCA=23 /CA DCH ADDRESS.
173 /
174 /PSUEDO=INSTR, FOR WF,SW SUBR,
175 /
176 WFOFF=SNA /WALITFOR CR15 NUT READY.
177 WIFON=SZA /AAITFOR CR15 READY.
178 /
179 /
180 /CONDITIONS FOR LUAD READER CONDITIUN IUT (CRLC).
181 /
182 CC1=20 /CLEAR STATUS,DISABLE INTERRUPT AND DATA CHANNEL,
183 cc2=27 /CLEAR STATUS,START READ,ENABLE INTERRUPT AND DATA CHANNEL.,
184 CC3=26 /CLEAR STATUS,ENABLE INTERRUPT,ENABLE DAYA CHANNEL,
185 CC4=04 /ENABLE INTERRS, DISABLES DCH
186 /
187 / ¥¥%%x 10T INSTRUCTIUNS *%#x%x%
188 /
189 CRPC=706724 /CLEAR STATUS EXCEPT CARD DONE,(ALSO DISABLES INTERR,)
190 CRLC=706704¢ /LOAD READER CONDITIONS,
191 CRR5=706732 /READ STATUS INTO AC,
192 /
193 +ENDC
194 /
195 705522 A +INH=705522 ZINHIBLT INTERRUPTS,
196 705521 A +ENB=705521 /ENABLE INTERRUPTS,
197 /
198 +EJECT

Figure 4-2 (Cont.)
XVM CR1ll XVM/RSX Handler

Task Development

PAGE 6 CDeves 021 CD..ee CR15/UC15 CARD READER EDIT #020

199 /====CR15 STATUS AND AC BIT ASSIGNMENTS.
200 /

201 /STATUS REGISTER BIT ASSIGNMENTS:

202 /

203 / BIT TRANSLATION

204 /

205 / 17 COLUMN READY

206 / 16 END UF CARD

207 / 15 ODATA CHANNEL OVERFLOW

208 / 14 DATA CHANNEL ENABLED

209 / 13 READY TO READ

210 / 12 ON LINE

211 / 11 END OF FILE

212 / 10 BUSY

213 / 09 TROUBLE (= IOR OF BITS 4 =~ 8)
214 / 08 DATA MISSED

215 / 07 HOOPER EMPTY/STACKER FULL
216 / 06 PICK ERRUR

217 / 05 #OTLUN ERROR

218 / 04 PHOTO ERROR

219 / 03=00 UNUSED

220 /

221 /AC BIT ASSIGNMENTS FUR LUAD CONDITION FUNCTIGN (CRLT)
222 /

223 / BIT FUNCTION

224 /

225 / 17 START READ

226 / 16 DATA CHANNEL ENABLE

227 / 15 INTERRUPT ENABLE

228 / 14 UFFSET CARD

229 / 13 CLEAR STATUS REGISTER

230 /

231 / STATUS REGISTER BITS CONNECTED TO FLAG AND INTERRUPT REQUEST:
232 /

233 / 17 DATA READY(ONLY IF DATA CHANNEL NUI ENABLED)
234 / 16 CARD DUNE

235 / 15 DATA CHANNEL QVERFLOW

236 / 09 ERROR CONVITLON

237 /

238 /MACRO DEFINITIONS:

239 /

240 /CP MACRO FUR CARD CULUMN TO ASCII TRANSLATIUN TABLE 026/029 CONDITIONALIZATION
241 /

242 « IFDEF VECO026

243 +DEFIN CP,C26,C29

244 C26\7777+1

245 «ENLM

246 <ENDC

247 «IFUND DECO026

248 «DEFIN CP,C26,029

249 C29\7777+1

250 ~ENDM

PAGE 7 CDevss 021 CDeees CR1IS/UCES CARD READER EDIT #020

251 <ENDC

252 /

253 /

254 +EJECT

Figure 4-2 (Cont.)
XVM CR1l XVM/RSX Handler

PAGE

255
256
257
258
259
260
261
262
263
264
265
266
267
269
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

8

CDeven

00000
00001
00002
00003
00004

00005
00006
00007
00010
00011
00012
00013
00014
00015
000186
00017
00020
00021

00022
00023
00024
00025
00026
00027
00030
00031

00032
00033
00034
00035
00036
00037
00040
00041
00042
00043

021

200646
060647
200650
060651
120652

000653
040567
723010
040570
000577
200561
741100
000653
200654
060570
500655
740031
040563

100625
200613
742010
740100
600057
000uv34
000032
0000653

00002v
000561
002700
000561
000100
000002
000041
004002
000000
251245

= XXX

TPDDODETXTPTTITP>TI

XXV LT

PP OPPFTPITP

Task Development

CD,evs CTR1S5/UC15 CARU REAVER EDIT #020

/
/
/ *%%%% HANDLER INITIALIZATION *##%% (ONCE UNLY CODE)
/
/START /STORAGE FUR AC 1N INTERR. SERVICE,
/1BUF /I0P OF INTERNAL BUFFER.
/
/
START LAC (PDVL) /SCAN PDVL FOR THIS OEVICE'S NJDE
1BUF DAC* (R1)
LAC (HNAM)
DAC* (R2)
JMS¥ (SNAM) /R, R2, R6, XR, & AC ARE ALTERED
/NODE FOUND?
CAL {10) /NO == EXIT
DAC PDVNA /YES == POVL NODE ADDRESS IN AZ.
AAC 2,TG /SAVE NUDE ADDRESS AND
DAC POVTA /IRIGGER EVENT VARLABLE ADDRESS
CAL ccen /CONNECT INTERRUPT LINE
LAC EV /CONNECT OK?
SPA
CAL (10) /NQ == EXIT
LAC (IG) /YES == SET TEvV ADORESS
DAC* PDVTA
AND (70000) /DETERMINE 'XR=ADJ'
TCA
DAC XADJ
/
«IFUND UC15
LAC (ccl) /CLEAR STATUS, UISABLE LNTER, AND DCH.
CRLC /LOAD FUNCTIUN,
+ENDC
+1FDEF UC1S
JMS CLEAR /CLEAR UUT PIREX DEVICE, wAIl FIR COMPLETE
LAC EVILK /FIND QUT IF OK
RTL /PDP11 SIGN BITI TU OURS
SMA /SKIP IF 1ROUBLE
JMP WFTGR /nOT, GU WALT FOR AURK
CAL MSINIT /PRINT PIKEX HAS NO CD MESSAGE
CAL wFMS /WALIT FOR MESSAGE CUMPLET1O
CAL (10 /EXIT
/
WEMS 20
EV
MSINIT 2700
EV
ERRLUN
INITMS

INITMS 0040027 0000007 LASCIL "*%#% NO CD In PIREX"C15>

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

PAGE

305
306
307
3o

309
310
311
312
313
314
315
316
17
318
319
320
21
322
323
324
325
326
327
328
329
330
33t
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

9

Cluuss

00044
00045
00046
00047
00050
00051
00052

00053

00054
00055

00056

R
R
R
R
R
R
R

R
R
R

R

021

220234
475010
342100
446344
050222
512133
006400

600057

030400
000000

717775

R

T

x> 3

Task Development

CD.evs CR15/UCIS5 CARD READER EDIT %020

HNn

/

/
/

+ENDC
JMP

AM «SIXBT

« IFUND
«BLOCK
+ENDC

« IFDEF
«BLOCK

«ENDC
#355%% END OF

AFTGR /WALT FOR TRIGGER

'Coepeg’ /HANDLER TASK NAME
JyC15

1214START=-,

ucis

S3+START~-,

INITIALIZATION CUDE *#%%

/¥%3%668% THE ABOVE CUDE IS OVERLAYED BY THE LWIERNAL BUFFER *%¥#%x
Adddadddd a R L P N LTI

/
/
/
/

/
wF
/
/
/

PaQ

~

NN NN

UC15 INTERRUPT=CAL INTERACTION WILL BE DIFFERENT
KEEP INITIAL PART SEPARATE

«[FUND

TGR CAL

ucis

WFTCPB /WALIT FOR [EV [0 BE SET

*444% THE TASK HAS BEEN TRIGGERED == PICK A REQUEST FROM QUEVE

DZM
LAC
DAC*
JMS#

JMP
+«ENDC

« IFDEF
UC1s CODE

16 /CLEAR TRIGGER

PDVNA /UEUUE A REQUEST

(RY)

(DQRQ) /R1, R2, R4, R5, R6, XR & AC ARE ALTERED
/WAS A REQUEST FOUND?

WFTGR /NO == WAIT FOUR TRIGGER

uC1s

THE GENERAL IDEA IS THAT ALL WALTS ARE DONE THRU
.THE TRIGGER, WE FIGURE OUT HERE WHO SET THE [RIGGER. I[HIS

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

PAGE

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
3164
365
366
367
368
369
370
3N
372
373
374
375
376
3177
378
379
380
38t
g2
383
384
385
386
387
388
389
390
91
392
393
394
395
396
397
398
399
400

PAGE

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

10

11

CDess

00057
00060
00061
00062
00063
00064

00065
00066
00067
00070

00071
00072
00073
00074

00075
00076
00077

00100
00101
00102
00103
00104
00108
00106
00107
00110

CDswus

00111
00112
00113
00114
00115
00116
00117

00120
00121
00122
00123
00124

00125
00126

00127
00130
00131
00132
00133

00134
00135

XD XX XDV T

DXV

R
R
R

THZXDXDXT DX

AT/ ODDR

021

000875
200562
140562
742010
751130
600071

540554
600177
540407
600057

200567
060647
120656
600057

040564
340563
721000

210005
500657
540660
600120
540661
600127
540662
600140
540663

021

600136
540657
600464
540664
600502
777172
600424

200567
060647
200564
060651
120665

600424
600423

200567
060647
200564
060651
120666

600424
600423

XTI

MXTTTXTOX

XP»XTXOTDL

XX WX

=

Task Development

CDesse CR1I5/UC15 CARD READER EDIT %020

/ ALLOWS US TO GET UUT UF HUNG DEVICE,
/ AND CAN SEE AN ABURT COMING THRU,

/

SINCE WE WAII HERE,

/WAIT FOR EVENT VARIABLE TG

/FIND QUT wHO IS CALLING

/RESET

/ABORI BIT TO SIGN BIT
/SKIP IF NOT ABORT,
/G0 DO ABORT IN REGULAR WAY, THE HANGLING
/READ IS REMEMBERED 1IN RRN!
/HAS A CARD BEEN DECLARED DONE BY INTERRUPT

/YEAH,

GU TRANSLATE IT
/ARE WE WAITING FOR INTERRUPT

1 IN AC.

/YES, AND 1T HASN'T HAPPENED YET, SINCE
/CLOUN NOT SET., WAIT ON THIS CAL REQ, TO BE
/DONE AFTER THE INTERRUPT HAPPENS, IF ABORT
/COMES IN THE MEANTIME, HE IS PUT AT HEAD
/OF DEJUE OF WAITING REQ,'S SO WE DO HIM,

/TRY TO DEQUE AFTER UPERATION BEFORE WAITING
/LN CASE wAITING FOR INTERRUPT HAS HELD OFF

/A REGQUEST,

/DIDN'T FLND ONE, GO WAILT

/YES == SAVE ADDRESS OF REQUEST NUDE
/SETUP XR TO ACCESS NODE

¥4%%% 1/0 REQUEST NUDE FURMAD *%%%¥

170 FCN CUDE IN BITS 9=17 AND LUN IN BITS 0=8

(0 IF gXM TSK),

== EVENT VARIABLE ADDRESS

WFTGR CAL WETCPB

PQ LAC TG
DZM TG
RTL
SPAICLALLAC
JMP Pa1

/
SAD CDON
Jup GUTCRD
SAD PUST
JHP WFTGR

/

/

/

/

/

PGl LAC POVNA
DAC* (R1
JMS* (VQRQ
JMP WETGR

/
+ENDC

/
DAC RN
TAD XADJ
PAX

/

/

/

/ (0) FORWARD LINK

/ (1) BACKWARD LINK

/ (2) STL PIR,

/ (3) PART. BLK PTR,

/ (4) TASK PRIORITY

/ (5}

/ (6)

/ (7) CTB PTR,

/ (10) EXTRA

/ (11) EXTRA

/
LAC 5.,X
AND (177)
SAD (024)
JMP ATTACH
SAD (025)
JMP DETACH
SAD (026)
JMP READ
SAD (036)

/FETCH 1/0 FCN COLE

/ATTACH REQUEST?
/YES == ATTACH I0 TASK
/NO == DETACH REQUEST?

/YES == DETACH FROM TASK
/N0 == READ REQUST?

/YES == READ CARD
/NU == HANDLER INFO,?

CDesss CR15/UC15 CARD READER ELIT #020

EVME

JMp
SAD
JMP
SAD
JMP
LAW
JMP

HINF
(777)
DAEX
(017}
CDABRT
=6

SEV

/
/ ATTACH TO A TASK
/

ATTACH

LAC
DAC*
LAC
DAC*
JM5 %

JMP
JMP

PDVNA
(R1)
RN
(R2)
(ALAD)

SEV
REQCHP

/
/ DETACH FRUM TASK
/

DETACH

LAC
DAC*
LAC
DAC»
JMS*

JMP
JMP

+EJECT

PDVNA
(R1)
RN
(R2)
(DLAD)

SEV
REQCMP

/YES == RETURN INFO IN Ev
/NQ == EXIT (DEASSIGNED) REQUEST?
/YES == ODEATTACH & EXIT
/ABORT REQUEST?

/YES.

/ND == UNLMPLEMENTED FUNCTIUN == SEr

/EVENT VARIABLE TO =6

/ATTACH LUN & UVEVICE °

/R3,

R4,

RS,

R6,

X10,

/%WAS LUN ATTACHED?
/NU ~= SET REQUESTOR'S EV TO =24

/YES REWQUEST CUMPLETED

/DETACH LUN & DEVICE

/R3,

/WAS LUN ATTACHED

R4,

RS,

Ro,

X10,

K11,

X111,

XR & AC ARE ALTERED

XR & AC ARE AUTERED

/N0 == SET REQUESTOR'S EV TU =24
/YES == REQUESI COMPLETED

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

4-34

PAGE

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

12

CDyass

00136
00137

00140
00141
00142
00143
00144
00145
00146
00147
00150
00151
00152
00153
00154
00158
00156
Q0157
00160
00161
00162

00163
00164
00165
00166
00167
00170

DITDSVDRNTWESTIDXD DD

TXTDDEX D

021

200667
600424

17117176
350007
740200
600460
210002
040556
210010
060670
210011
060671
740031
723002
040566
040574
200564
040571
060651
120672
600462

2206170
723111
040572
723002
040573
140565

TP T P> X TAXXTEDDTP PO DT> TP 25

Task Development

CDuseve CR15/UC15 CARD READER EDIT %020

/
/ RETURN HANDLER INFORMATION
/

HINF LAC (200007)
JMP SEV

/
/READ CARD
/

READ LAW -2 /CHK, FOR 1OPS ASC1I DATA MUDE,
TAD 7,X
SZA /10PS ASCII?
JMP EVMT /NO, RETURN =5 Ev,
LAC 2,X /SAVE STL NODE PTR, FOR IASK 1DENTIF,
DAC STLA /SAVE VALLD STL PTR,
LAC 10, /YES. VAL/ADJ, HEADER ADDRESS
DAC* (R3) 7HEADER ADDRESS,
LAC 11,X /WORD COUNT
DAC* (R4)
TCA /SETUP COUNTER SINCE
AAC +2 /OFFSEI FOR CR APPENDAGE,
DAC COWDCT /VAJX ALTERS THE XR,
DAC LCWC /SAVE IN CASE RETRY,
LAC RN /REQ. NUDE ADDRESS,
DAC RRN /SAVE READ REW, NODE ADDR, FUR ABORT,
DACH (R2)
JHS* (VAJX) /VAL/ADJ. (ALTERS XR,AZ,R3,R5)
JHP EVM30 /RETS. HERE IF ERROR (I/U PARAM., OUT

/UF PARTITION,

LAC* (R3) /ADJUSTED HEADER ADDRESS =1 TU X12 TEMP.
AAC -1
DAC TX12
ARC +2 /TEXT ADDRESS=1 [0 X13 TEMP,
DAC TX13 /
DZM CDRVAL /INLT. VALLD. BITS,
LIFUND UC15
LAC COON /HAS CARD DUNE FLAG COME UP SINCE
SNA /LAST CARD READ?
CAL WFCHCD /NO, WALTFUR CARD DUNE,
DZM coon /YES. CLEAR CARD DONE FLAG,

RETRY LAC (IBUF-1) /SET INTERN, BUFF ADDR=i TO DCH CA.
DACH (CCA)
DZM* (CWC) /PREVENTS DUUBLE INTERRUPTS ON ERRORS! !}
LAC TCWC /RESTORE REQ, #C.,
DAC COWDCT _
DZM EV1 /REINIT EV. RELRY FROM ERROR.
CRRS /READ STATUS I# DRDER IO CHECK FOR READER READY
AND (60) /AND ON=LINE,
SAD (60) /STATUS BITS 12, 13 SEI?
5KP /YES, ON=LINE AND READY FUR READ,
JMP EHRL /NO, NOT READY, TYPE MSGL AnD wALT FUR READY.
LAC (cc2) /CONDITION CUDE 2 == READ CARD,
CRLC /LOAD CONDITLONS,

Figure 4-2 (Cont.)
XVM CR1l XVM/RSX Handler

Task Development

PAGE 13 CDuusss 021 CD.vve CR15/UCL5 CARD REAUER EDIT #020

484 CAL WFCRCH /WAIT FOR INTERRUPT,

485 /

486 /

487 /

488 /UPON RESUMPTION FULLOWING WALTFOR, EXAMINE Ev AND TAKE THE FOLLUWING
489 /ACTION?

490 /

491 /IF EV BIT 9 = 0 (TROUBLE BIT), NU ERRURS., TRANSLATE CARD PUNCHES
492 /TO ASCII AND PASS TO USER AS 5/7 PACKED ASCII,

493 /1F BIT 9 = 1 (TROUBLE BIf), ERROR BIIS 08 TU 04 ARE CHECKED I
494 /DESCENDING NUMERICAL ORDER, THE FULLOWING ERROR MESSAGES FUR THE
495 /GLVEN ERRUR CONDITIONS ARE OUIPUT:

496 - /

497 /DATA MISSED OR PHOTUO ERROR = '#%x CD DATA MISSED/PHOFU ERROR!

498 /PICK OR MOTION ERROR = '#*%% CD PICK ERROR!'

499 /HOPPER EMPTY OR STACKER FULL = IGNORED. CAUGHI un SUBSEQ,

500 /READ AS A READER NUT READY CONDIIION,

501 /IN ALL CASES WHERE A MESSAGE [5 TYPED, THIS HANDLER TASK MARKS TIME
502 /UNTIL THE ERROR IS REMEDIED, AT THIS POINT, IHE CARD IS REREAD.
503 / i

504 ' LAC EvV) /EV SET AT INTERR, LEVEL TU CONTENTS UF
505 DAC TST /STATUS., SAVE TEMP,

506 i SWHA /SWAP HALVES FOR I'ROUBLE BIT CHECK,
507 SMAIRAR /1F NEG,,TROUBLE,

508 JMP TRANS /NO TROUBLE, GO TRANSLAIE,

509 SZL{RAR /DATA M1SSED?

510 JMP ERR4 /YES.

511 SZLIRAR /NO, HOPPER EMPTY/STACK, FULL?
512 JMp TRANS /YES. IGNORE, WHEN NEXT CRD, REAUD CAUGHT AS NOT READY,
513 SZLIRAR /PICK ERROR?

514 JMP ERR3 /YES.

515 SZL!RAR /MOTION ERROR?

516 JMP ERR3 /YES,

517 JMP ©RR4 /NO, MUST BE PHOTU ERROR.

518 /

519 /

520 ERR4 1s2 ERRPT

521 ERR3 182 ERRPT

522 ERR2 152 ERRPT

523 ERR1 LAC* ERRPT /ERRMSG. BUFFER ADDR, TJ AC.

524 JMS TTYOUT /TYPE MESSAAE,

525 | JMS WF o, SW /WAITFOR READER READY.

526) AFON

527 LAC (ERRPT+1) /REINIT, ERRPT.

528 DAC ERRPT

529 JMP RETRY /READ ANOTHER CARD,

530 /

531 .EJECT

532 TRANS LAC IX12 /SET AUTO INDEX REG,

533 DAC* (X12)

534 LAC TX13

535 - DAC* (X13)

Figure 4-2 (Cont.)
XVM CR1l1 XVM/RSX Handler

PAGE

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

Task Development

14 CDsous 021 CDuse« CRIS/UC15 CARD READER EDIT %020
/
/ NOW BRING BACK RN FRUM RRN, IN CASE RN DESTROYED IN MEANTIME
/
LAC RRN
DAC RN
LAC (1BUF) /TUOP OF INTERNAL BUFFER
DAC ICA /PTR TO BUFFER
LAW =20
DAC CbCOLC /CARD COL COUNT
CDRM5 LAw -5
DAC CORSCT
CDML2 LAC* ICA /GET
SAD CDRALT /ALT MODE (12,1,8 PUNCH)?
JMP CDGALT /YES == TERMINATE BUFFER
SAD (1717 /N0 == 18 IT AN EOF?
JMP EOQF /YES,
LAC COTABL /NG == TRANSLATE IO ASCII
DAC CDTPTR /GET TOP OF TABLE AND SET PTR
LAC CDTLN1 /SET TABLE LENGTH
COML4 DAC CDTLEN /CURRENT LENGTH/2
ADD CDTPTR /CURRENT TABLE TOP + LENGTH/2
DAC CUCPTR
LAC* CDCPTR /GET CURRENT LITEM
AND (77117
SZAICLL
ADD CD7700 /ADD 1N REST OF 2'S COMPLEMENI WORD
TAD* ICA /CURRENT COLUMN
SNAICLA /MATCH FOUND?
JMP CDCFND /YES
SAD COTLEN /CURRENT TABLE LENGTH =07
/TH1S MEANS AN UNKNOWN TARD PUNCH
JMP LLLCP /G0 OUTPUT 'ILLEGAL CARD PUNCH!.
SNL /L=0 JUMP UP, L=1 JUMP DOWN TABLE
JMP CDDPTR
LAC CDCPTR /SET TABLE TOP IO LOWER HALF
OAC COTPTR
CDDPTR LAC CDTLEN /UPDATE TABLE LENGTH
CLL!RAR
JMP CoML4
CDGALT LAw 4000 /ALT MODE
JMP coceur
/
EOF LAC (1005
JMP REQUCMA /SET HDR WRI TO EODF

/
/COME HERE ON MATCH FUUND

/

CDCFND LAC*
CMALICLL
TAD
CMA

CDCPTR

CDTABL+1

/REQUEST COMPLETE

/GET CURRENT ENTRY
/GEN, LEFTMOST BIT
/ADD 4000000

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

588
589
590
591
5§92
593
594
§95
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

623
624
625
526
627
628
629
630
631
632
633

635
636
637
638
639

Task Development

15 CDveee 021 CDyess CR1I5/UC1IS CARD READER EDIT #020
XOR CDTABL+1 /RESTORE SIXTR BIT
RAR
CDCPUT DAC CDRWD3 /PUT IN TOP OF 3 WORD SHIFT BLOCK
COCLAW LAwW -7
DAC CDR7CT
CDCPL1 LAC CDRWD3 /CDEwD3,CORWD2 & CDRWD1 SHIFT AS A UNIT USING
/THE LINK TO PASS BITS FROM wORD TO wORD
RAL
DAC CDRAD3
LAC CDRWD2
RAL
DAC CDRWD2
LAC CDRAWD1
RAL
DAC CDRWD1
152 COR7CT
JMP coucpPLl
152 ICA /POINT TO NEXT CARD JOL
182 CORSCT /HAVE WE PROCESSED 5 AORDS?
Jup CDML2 /NO GET ANOTHER ONE
LAC CDWDCT /YES == UPDATE WORD COUNT AND
TAD (2 /CHECK TU SEE IF WE HAVE OVERFLUWED THE
DAC CowbCT /USER'S BUFFER
SMA
JHe CDVER2 /YES == WE HAVE OVERFLOWNED
LAC CDRWD2 /NO == INSERT S/7 WORDS IN USER'S BUFFER
CLLIRAL
DAC CDRADZ
LAC CDRWD1
RAL
DAC* X13 /STORE FIRST WORD
LAC CDRnD2
DAC* X13 /STURE SECOND WORD
152 CDCOLC
JMP CDRMS
/
«ENDC
/
«IFDEF UC15
/
/ IN THE CASE OF THE UNICHANWEL, WE RECIEVE A 42(10) WORD
/ BUFFER, THE FIRST WURD IS A BYTE COUNT (NOW ALWAYS 80(10)).
/ NOTE THAT AN EOF CARD HAS A BYTE CUUNT UF 11!
/ SPOOLER DUES CHECKSUM CALCULATION, NOT US.
/ THE SECOND IS A CHECKSUM SO ENTIRE BUFFER ADDS TO 0
/ 1LINPNEMODULO 2°16 THAT 1S#ss!l!, THEN ARE 40(10) WORDS
/ OF 'COMPRESSED CULUMN', (SEE CR=11 DRIVER MANUAL). EACH
/ WORD HAS TWO EXTRANEOUS BITS AT LEFT, THE ISECUND ZHAR!
/ OF THE PAIR, AND FINALLY THE FIRST CHAR OF PAIR AT RIGHTMOST
/ QF WORD, THE PDP=1i HAS ALREADY CHECKED FOR VAL1D PUNCH
/ COMBINATIONS (64 VALID CARD ASCII, PLUS 12=1~8 FOR ALTMODE).
/

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

PAGE

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
6648
669
670
671
672

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

16

CDuusnse

00171
00172
00173
00174
00175
00176

00177
00200

00201.

00202
00203
00204
00205
00206
00207
00210
00211
00212
00213
00214

00216
00216
00217
00220
00221

00222
00223
00224
00225
00226
00227
00230
00231
00232
00233
00234
00235

00236
00237
00240
00241
00242
00243
00244

DXV X W EXIVDTXVVLTTOD

TTDVXZXTXDD TXDVIXVTDDIDDD

021

750030
040407
140554
200614
100616
600057

200871
040564
140407
140554
200605
742010
745120
600636
200572
060673
200573
060674
220675
540676

600171
500677
340700
540701
600420

200675
744010
040405
777660
040560
200331
040327
200566
744020
040566
200405
440405

744020
040406
220406
741410
743030
740020
500702

XETDDDTP>PUVITOD

TXDDODT D

TT/XTPXIXTTIOP»E D

XP>PrrXxP

Task Development

CD.ev. CR15/UC15 CARD READER EDIT %020

R

QN NN

P

[

/

AN

ETRY CLALIAC
DAC
DZM
LAC
JMS
Jup

POST
coon
TCBP
CoIu
WFTGR

/SET VARLABLE SAYBING WE'RE WNAITING FUR

7/ INTERRUPT

/AND 5AY wE HAVEN'T GUTTEN IT YET

/ADDR OF TABLE TELLING POP=11 TID READ CARD
/ROUTINE TO SEND REQUEST TO PDP=i}

/WALIT FOR COMPLET1O0N 1NTERRUPT

COME BACK HERE WHEN CARD 1S READ

OTCRD LAC
DAC
DZM
DZM
LAC
RTL
SPAICLL!
JMP
LAC
DAC*
LAC
DAC*
LAC*
SAD

JMP
AND
TAD
SAD
Jup

LAC

CLLIRAL

DAC

LAw

DAC
KINT LAC

DAC

LAC

CLL!RAR

DAC
DRML2 LAC

18z

CLL{RAR
DAC
LAC*
SZLIRAL
SWHA ! SKP
RAR
AND

RRN
RN
POUST
COON
EV1l

RAR
CDUCEC
X12
(X12
TX13
(X13
(IBUF+2
(104611

RETRY
(340
(445
(1005
REQCMA

(IBUF+2

CDIPTR
=120
CDCOLC
PAKI
PAKSH
COwDCT

COWDCT

CDIPTR
COIPTR

CoT1
coT!

(377

/RESTORE RN NODE

/CLEAR INIERRUPT FLAGS

/BEST T0 CLEAR POST FIRST!

/EVENT VARIABLE FROM PDP=11

/PDP=11 SIGN BIT TQO OUR SIGN BIT
/S8KIP LF OK, START CLEARING HIGH B1TS
/GO CHECK WHICH KIND OF PIREX ERRUR
/SETUP X12,X13 FOR USER BUFFER
/MANIPULATIONS, X12 HEAQER POINTER
/X13 DATA POINTER

/GET FIRST CHARACTER PAIR (2 WORD HDR)
/SPUOLER USES AN ALT=ALI CARD AS AN END
/0F DECK CARD, WE SHOULD IGNORE IT!!
/1T WAS ONE, JUST READ THE NEXT CARD
/12,11,0 PUNCHES IN FIRST COLM,.=EOF

/1F IT IS UNE, MAKE A 1005

/WELL, IF SO GO LACE 1005 AS HEADER
/EQF CARD, JUST SET HEADER,

/DATA STARTS AT BUFF+2

/TOP 17 BITS ADDRESS, LAST 1S RIGHT=LEFTI FLOP
/TO GET INCOMING CHAR'S

/80 CHAR'S

/NOTE WE USE COUNTERS DIFERENT ALSO

ZINLIT 5/7 PACKER TU EXPECT

/18T CHAR OF A BUNCH OF FIVE

/WE USE AS COUNT UF PAIRS, NOT wWORDS

/80 DLVIDE BY Tw0

/WATCH IT! TOP 17 BITS ADDR, LOA BIT LEFT
/RIGHT FL1P=-FLOP. AND!! POINTER PUOIN[S TO
/NEXT CTHAR, NOT LAST OWNE RETREIVED,
/FLIP=FLOP TO LINK, ADDR AC

/HOLD POINTER IN TEMPURARY

/GET CHARACTER PAIR

/THESE THREE GET CORRECT CHAR

/TO LJ4 ORDER 8 BITS OF WORD

/STRIP OTHER CHARACTER
/AT THIS PUINT HAVE CLOMNS 12,11,0,9,8,1=7
/WHERE 1=7 CODED IN THREE BITS

Figure 4-2 (Cont.)
XVM CR11 XVM/RSX Handler

PAGE

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
128
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

17

CDeuss

00245
00246
00247
00250
00251
00252
00253
00254
00255
00256

00257

00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272

00273
00274
00275
00276
00277
00300
00301
00302
00303
00304
00305
00306
00307
00310
00311
00312
00313
00314
001315
00316
00317
00320

R
R
R
R
R
R
R
R
R
R

x

TODVDDVDX VXTI

XDV DVOTXTDIXTXDTXTODIODY

021

040406
540404
600260
500703
740200
717711
340406
040406
500664
340406

745000

200704
742020
340705
040406
220406
740400
742030
100323
440560
600234
600410

040061
062063
064065
066067
070071
072043
100047
075042
060057
123124
125126
127130
131132
135054
045137
076077
055112
113114
115116
117120
123122
041044

> XD ODPPXNDTD

XXT/PPXXDPD

PP IIDDD

Task Development

CDuvse CR1I5/UCIS CARD READER EDIT #020

/

/
CDGALT

NNNN N

CDTABL

DAC
SAD
JMP
AND
SZA
LAw
TAD
DaAC
AND
TAD

SKP!CLL

LAC
RTR
TAD
DAC
LAC*
SNL
SWHA
JMS
182
JMP
JMP

« IFUND
040061
062063
064065
066067
070071
072043
100047
075042
060057
123124
125126
127130
131132
135054
045137
076077
055112
113114
115116
117120
121122
041044

COT1

/HOLD

CDALT /ALT MODE SPECIAL CASE, NU REMAP
CDGALT /REJOIN AS SPECIAL CASE

(20

-7
CDT1
CDT1
(17
CDT1

(240

/LF NINE PUNCH, PECIAL CASE, REMAP TU H,1 PUNCH
/COMBO FUR OUR TRANSLATE, SKIP LF NOI wINE
/ADDED TOQ '9' GLVES '8' AND '§°

/REMAPPED,

/SAVE, NOw TO MOVE BUTIOM FUUR BLITS LEFT ONE
/PUSITION (9 POSITIUN NOW VACATED?)

/FTHIS DOES IT, LEAVING LUWN URDER BIT ZERO
/NOAW COLUMNS 12,11,0,8,1=7,ZERD BIT!

/HIDE YOUR HEAD., CLL FOR COMING RIR,SKIP
/OVER ALT=MUDE RE~ENTRY

/INDEX TO ALT MOODE

/RIGHT=LEFT TU LINK, INDEX TO AT

(COTABL /TABLE ADDR

cDT1
CDT1

/GET PAIR FRUM TRANSLATE TABLE
/HERE 0 1S LEFT, IN NURMAL SENSE

PAKS7 /5/7/ PACKER (LT SIRIPS XTRA B1TS)
CDCOLC /807
CORML2 /ND
COCLUS /YES

TRANSLATE TABLE 4 GROUPS OF 16 CHAR'S, Tw0O PER WORD. 8 WORD
SPACE BETWEEN LAST TWwU GRUUPS, IN WHICH wE PUT OTHER STUFF
CONDITIONALIZED FOR 026=029 OF CUURSE, LEFT HAND CHAR IS FLRST.

DECO26

/BLANK, 1=PUNCH
/2=PUNCH, 3=PUNCH

/74,5
/6,7

/8,9 (URVERED AS 8-1)

/8=2
/8=4
/8=6

r8=3
18=5
18=7

/70,0=1

/0=2
/0=4
/0=6
/0=8

/0=8=4,0
/0=8=6,0

s0=3
+0=5
0=
1 0=9(U
/0=8=2,0~8
=

=8

7
RDERED AS 0-8=1)

b
-3
=5
-7

/11,11=4

/11=2,11=3

/11=4,11=5

/11=6,11=7

/11=8,11=3(0RDERED AS 11=8=1)
/11-8-2,11=8=3

Figure 4-2 (Cont.)
XVM CR11 XVM/RSX Handler

PAGE

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
7159
760
761
762
763
764
765
766
767
768
769
770
771
712
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

788 -

789
790
191
792
793
794
795

18

CDevus 021

00321 R 052051 A
00322 R 073134 A

00323

00324
00325
00326
00327
00330
00331
00332

DX T

000000

500706
744000
620327
740040
620323
000345
000000

PTDVP>TP>DO

Task Development

CDeese TR1S/UC1S CARD READER EDIT #020

052051 /11=8~4,11=8=5
073134 /11%8=6,11=8=7
«ENDC

«IFDEF DECO26

COTABL 040061

AN

NN TNNNNNNN

PAKSW HLT

PAK1 PAKST

062063
064065
066067
070071
137075
100136
047134
060057
123124
125126
127130
131132
073054
050042
043045
055112
113114
115116
117120
121122
072044
052133
076046
<ENDC

NOw THE 8 LOC, BREAK [N THE TABLE

THE 5/7 PACKER, A LITTLE THICKY PAKSW KEEPS A PC AHIZH
'REMEMBERS' WHICH CHARQCTER OF 5 wE ARE AT, TO IwIT PACKER,
SEE TWO LINES OF CUUE AT PAKINT, NORMAL 'FLUSH' OUT #0ULD
BE TO SEND NUL CHAK'S UNTIL PAKSw=PAKI, LN THIS

HANOLER, PAST HISTURY SAYS WE TRUNCATE ALwWAYS AT A WJRD
PAIR BOUNDARY, EVEN FOR SHORT BUFFERS, 1 AM AFRAID TO
CHANGE THIS, EVEN THOUGH [DOw'T LIKE IT,

AKS7 0 /CALL WwIIH CHAR IN AC, (DESTRIYED)

/PUSHES CHAR'S THRU X13. EARLY END CHECK
/IN CDADCT,

AND (177 /STIP AIRA

CLL /FUR ALL RUTATES AND SWAPS!

JHP# PAKSW /TU #HATEVER ACTION THIS CHAR. NEEDS.

/POINTER TO ACTINS FOR CHARAZTER

JMP* PAKS? /THAL'S ALL, OUT

/INIT PAKSW FUR FIRST CHAR,

PAKT 0 /TEMPURARY FOR PARTIAL ~ORDS

/
/

REST OF TRANSLATE TAbLE

Figure 4-2 (Cont.)
XVM CR11 XVM/RSX Handler

19

CDoses

00333
00334
003135
00336
00337
00340
00341
00342

00343

00344

00345
00346
00347
00350

00351
00352
00353
00354
00355

00356
00357
00360
00361
00362
00363
00364
00365
00366
00367
00370

00371
00372

R

oo =

o o TV XNXNDX DD T XXX

021

046101
102103
104105
106107
110111
133056
074050
053136

175000

100327

742010
742030
040332
100327

742010
742010
240332
040332
100327

742020
740020
040327
500664
240332
060013
200327
740020
500707
040332
100327

742030
740020

PP PP

> > WRTP XTI T WX T X P>

Task Development

CDuesse CR15/UC15 CARD READER EDIT %020

/
«1FUND DECO26

046101 /12,12-1
102103 /122,12
104105 /124,12
106107 /12-6,12
110111 /12+8,12
133056 /12-8~2,
074050 /12=8-4,
053136 /12=8=6,
LENDC
.1IFDEF DEC026
053101
102103
104105
106107
1101114
077056
051135
074041
LENDC
175000
’
/ NOW REST OF 5/7 PACKE
/
PAKG JHS PAKSW
/
PAKST RTL
SWHA
DAC PAKT
Jus PAKSW
/
RTL
RTL
XOR PAKT
DAC PAKT
JMS PAKSW
/
RIR
RAR
DAC PAKSW
AND (17
XOR PAKT
DACH X13
LAC PAKSW
RAR)
AND (700000
DAC PAKT
JMS PAKSW
/
SWHA
RAR

-3

=5

-7

=9(ORDERED AS 12~8=1)
12=8-3

12=8=5

12=8«7

/ALT MODE, FUR BOTH PUNCH SEIS,
R

/5TH CHAR WRAP BACK TQ 1ST, JMS TO PAKSw
/LEAVES ADDR OF ACTIUN FOR 1ST.!.

/15T CHARACTER ACT1ON, MOVE TQ LEFT OF WORD

/HOLD AS PARTIALLY ASSEMBLED AOJRD
/LEAVE POINTER TO 2ND CHAR

/2ND CHAR ACTION

/MARGE WITH FIRST
/WAIT FOR PART OF 3RD I0 FILL WORD
/LEAVE POINTER TO THIRD

/3RD, TWO PARTS, FIRST 1S TOP 4 BITS
/RIGHT JUSTIFIED 1ST WORD QF PAIR
/VERY=TEMPORARY IN HERE

/ZAP OTHER BITS

/COMPLETE 1ST WORD OF PAIR

/PLACE I[N USER BUFFER

/GET BACK THIRD CHAR (LINK STILL OK!i!)
/2ND JOB, LOW THREE BITS OF THAR TOP OF
/2ND WORD OF PAIR

/WHEW!, HOLD THAT IN PARTIAL WIRD
/LEAVE POINTER FOR FOURTH

/4TH, SNUG UP TO 3 BITS ON TOP

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

PAGE

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
8§92
893

895
896
897
898
899

20

CDenos

00373
00374
00375

00376
00377
00400
00401
00402
00403

00404
00405

00406
00407

00410
00411
00412
00413
00414
00415
00416
00417
00420
00421
00422
00423
00424
00425

00426
00427
Q0430
00431
00432
00433
00434

DTRVXVIDXT XD D DR

021

240332
040332
100327

440566
741010
600452
240332
060013
600344

000211
000000

000000
000000

200710
060013
200560
723022
744000
640711
340565
723002
060012
7717177
040571
750030
100426
600060

000000
722000
200564
060651
340563
721000
210006

TP DD XX T

» >

DLV TBDUP D

P LTTPD

Task Development

CDevss CR15/UCES CARD READER EDIT #020

/
CDALT
CDIPTR
/

/

coT1
POST

XOR PAKT /TUGETHER
DAC PAKT
JIMS PAKSW /LEAVE POINTER FOR STH
152 COWDCT /OVERFLOW SHORT BUFFER?
SKPIRAL /NO, RAL LEAVE XTRA BIT OF PAIR ON RIGHT
JMP CDVER2 /UH=UH, GO CORRECT
XO0R PAKT /COMPLETE 2ND WORD OF PAIR
DAC* X13 /PLACE
JMP PAKQ /G0 PLACE PAKSW FOR FIRST CHAR OF FIVE
211
0 /POINTER TU INPUT DATA IN INPUT BUFFER
/FRMAT, LOW BIT RIGHT=LEFT FLIPFLOP
/TOP 17 BITS ADDRESS
0 /TEMPORARY FOR TRANSLATION
0 /0 WHEN NOT WAITING FOR INTERRUPT, 1 WHEN YES,
+«ENDC

/ THE BUFFER HAS BEEN REMAPPED =~ STORE A 'CR' IN THE TRAILER
/ WORD AND SET UP THE HEADER WORD

/
coCLUS

REQCMA
REDCOM

REQCMP
SEV

~

NN NNNNNN

EVRN

LAC
DAC*
LAC
AAC
CLL
ALS
TAD
AAC
DAC#*
LaAw
DAC
CLA!
JMS
JMP

SEVRN

ROUTINE
THE NODE ADDR, 1S IN RW

0
PAL
LAC
DAC*
TAD
PAX
LAC

Fi

(64000
X13 /SET 'CR' IN USER BUFFER
CDCOLC /COCOLC IS NEGATIVE
22
/ROTATE INTO PLACE
11 /SHIFT INTO POUSITION
CDRVAL /ADD IN BUFFER OVERFLOA IF ANY (BITS 12 & 13 =1)
2
X12 /SET HEADER WORD ONE
-1 /SET RRN, SAYING NO MORE READ OUTSTANDING
RRN

1Aac
SEVRN /5UB, TO SET EV, RETURN NUDE
PQ /G0 LOOK FOR MORE WORK

IS CALLED WITH VALE FOR EV IN AC

EV IS SET, SIGNIFICANT EVEN! DECLARED, 10CD UDOE, NODE RETURNED,

/SAVE AC VALUE
RN /NODE ADDR
. (R2 /SYSTEM ARGUMENT HOLDER
XADJ /ADJUST FOR PREESENT PAGE
/FOR XR ADDRESSING
6,X /EVENT VARIABLE ADDRESS

gure 4-2 (Cont.)

XVM CR11l XVM/RSX Handler

Task Development

PAGE 21 CDysss 021 CDsoss CRI5/UCES CARD READER EDIT %020
900 00435 R 741200 & SNA /SKIP IF REALLY ONE
901 00436 R 600443 R JMP NUSET /NOPE, S0 DON'T SEI
902 00437 R 340563 R TAD XADJ /MODIFY 1I FOR ADDRESSING
903 00440 R 721000 A PAX
904 00441 R 730000 A PLA /BRING BACK SETTING VALUE
905 00442 R 050000 A DAC 0,X /THERE IT GOES!
906 00443 R 200711 R NOSET LAC (401000 /VECLARE A SIGNIFICANT EVENT
907 00444 R 705504 A IsA
908 00445 R 200704 R LAC (POOL /GIVE NODE Y0 POOL
909 00446 R 060647 R DAC* (R1 /SYSTEM ARGUMENT REG
910 00447 R 120712 R JMS* (10CD /DECREMENT IO COUNT
911 00450 R 120713 R JMS ¥ (NADL /GIVE BACK NODE
912 00451 R 620426 R JMP* SEVRN /THAT/S IT
913 /
914 /
915 /
916 / ¥*¥%% BUFFER OVERFLOW
917 /
918 00452 R 777776 A CDVER2 LAW -2 /BACKUP USER BUFFER PIR
919 00453 R 360674 R TAD* (X33)
820 00454 R 060674 R DAC* (X13)
921 00455 R 200714 R LAC (60) /SET OVERFLOW BITS FOR USE BY CwCLUS
922 00456 R 040565 R DAC CDRVAL
923 00457 R 600410 R JMP COCLOS
924 /
925 00460 R 777771 & EVMT LAW -7 /1LLEGAL DATA MODE,
926 00461 R 600424 R JMP SEV
927 00462 R 777750 & EVM30 Law =30 /1/0 PARAM, OUT OF PARTITION,
928 00463 R 600424 R JMP SEV .
929 /
930 +IFUND UuCi5
931 /
932 REVME LAwW -6 /ILLEGAL FUNCTION,
933 JMP SAEV /SET ABORT EV.
934 /
935 /0N ILLEGAL CARD PUNCH, WAIT FOR READER NOT READY FOLLOWED BY
936 /READER READY SEWUENCE BEFORE READING ANOGTHER CARD,
937 /
938 LLce LAC (ERRMG2) /TY{PE '"ILLEGAL CARD PUNCH',
939 JMS TTYOUT
940 JMS AF , SW . /WALIT FOR READER NOT READY,
941 WEOFF /PSUEDD INSTR., FOR wF,.Sw,
942 JMS WF ,SW /WAIT FUR READER READY.
943 WFON /PSUEDO INSTR, FOR WF,.Sw,
944 JMp RETRY /READ ANUTHER CARD,
945 /
946 / SUBR, TO WAIT FOR READER NOT READY OR READY FOR READ
947 / PER PSUEDO INSTR., IN CALLING SEQUENCE, AFTER MARK 1IME REQS,,
948 / THE TRIG, EV. IS CHECKED FOR AN ABORT REQ, IN I'HE QUEUE,
949 / 1F TASK REQ, READ IS TO BE ABORTED, THE SUBR, DDESN'T
950 / RETURN NORMALLY,BUT EVENTUALLY JUMPS TO CDABRT.
951 / CALLING SEQUENCE:

Figure 4-2 (Cont.)
XVM CR1ll XVM/RSX Handler

Task Development

PAGE 22 CDeves 021 CDvuse CRIS/UCIS CARD READER EDIT %020
952 /
953 / JMS WAF ,SW
954 / PSUED, INSTR, (WFOFF OR WFON)
955 / SUBR, RETURN ,IF NO INTERVENING ABORT FOR THIS TASK.
956 /
957 WF,Sw 0
958 LAC* WF,SW /GET PSUEDU INSTR,
959 DAC PVvy
960 Isz WF,SW /BUMP EXIT.
961 WF.SWA CRRS /READ CARD READER STATUS,
962 AND (20} /CHECK FOR READER READY FUR READ,
963 Pve XX /SNA OR SZA, (READER READY IF NON=ZERO AC}).
964 JMP* WF ,SW /EXIT,
965 CAL MTCPB /MARK TIME FOR WAILT,
966 CAL AFECB /WAID FOR MARK TIME INTERVAL,
967 DZM EV
968 LAC TG /CHECK FOR ABORT REW. 1N QUEUK,
969 RTL
970 SMA /ABORT REQ.?
971 JMP WF ,SWA /CHECK AGAIN,
972 DZM TG /YES, DEGQUEUE ABORT REQ,
973 LAC PDVNA /PDVL NUDE ADDR,
974 DAC* (R1)
975 JMS* (DQRQ) /DEQUEUE ABRT. REQ, R1,R2,R4,R5,R6,XR,AC
976 NOP /ALTERED, ASSUME ABRI, REQ. IN QUEUE,
977 DAC RA /SAVE ABURT REQ, NODE ADDR,
978 TAD XADJ /SET XR.
979 PAX
980 LAC 6,X /GET ABRT. REQ, EV.
981 DAC ARE
982 LAC 5,X /CHECK FOR ZERO LUN,
983 AND (777000} /BITS 0=8
984 SZA
985 Jue AEVM6 /ERROR, NON=ZEROD LUN.
986 LAC 2,X /GET STL, NODE PTR, AND CHECK AGAINST
987 SAD STLA /READ REQ. STL NODE PIR. SAME?
988 JMP CDARD /YES, ABURT READ REQ. AND CLEAN UP,
989 LAC PDVNA /NO, CLEAN UP QUEUE UF TASK I'0 BE ABRIED,
990 DAC* (R1) /ALSO RETR, ABRT., REQ, NODE TO PUOL AND
991 Lac RN /DECR, TRANSF, PEND. INT, ABRI, REu, NODE
992 DAC* (R2) /ADDR. TO R2,
993 JMS* (DMTQ) /EMPTY REQ, WUEUE OF ALL L/0
994 /REQ,'S MADE BY TASK BEING ABORTED,
995 /R1,R2,R3,R5,R6,X10,X11,X12,XR,AC ALTERED.
996 LAC (1) /SET ABRT. REG, EV 10 +{,
997 SAEV PAL
998 LAC ARE /RBORT REQ. EV,
999 TAD XADJ
1000 PAX
1001 PLA
1002 DAC 0,%
1003 LAC (401000)
PAGE 23 CDsyse 021 CDsses TRI5/UC1S CARD READER EDIT #0720
1004 ISA /DECLARE SIGNIF, EVENT.
1005 LAC RN /RETRN, ABRT, REW, NJDE [0 PUOL,
1006 DACH (R2)
1007 LAC (POOL)
1008 DAC* (R1)
1009 JMS* (Ioco) /UECR, TRAWNSF. PEND. CNT.
1010 JMS* (NADD) /RETRN, NODE TU PUOL,
10114 JHP WF . SWA /CHECK AGAIN,
1012 CDARD CLAJIAC /SET CARD DUNE FLAG.
1013 DAC CDON
1014 JMP CDABRT /PROCEED WITH ABQORT,
1015 /
1016 +ENDC
1017 +EJECT

Figure 4-2 (Cont.)
XVM CR11 XVM/RSX Handler

Task Development

PAGE 24 CDesos 021 CDsvss CR15/UC1S CARD READER EDIT #020

1018 /

1019 / EXIT REQUEST (FROM TASK ",,,,REA")

1020 /

1024 00464 R 200704 R DAEX LAC (POOL) /RETURN REWUEST NODE IO POOL
1022 00465 R 060647 R DAC* (R1)

1023 00466 R 200564 R LAC RN

1024 00467 R 060651 R DAC* (R2)

1025 00470 R 120712 R JMS* (10CD) /DECREMENT TRANSF, PENDING COUNT
1026 00471 R 120713 R JMS* (NADD)

1027 +IFUND UC1S

1028 LAC (ccy) /CONDITION CODE i == CLEAR CONTROL,
1029 CRLC

1030 CAL ocpPB /DISCONNECT

1031 +ENDC

1032 «IFDEF UCi5

1033 00472 R 100625 R JMSs CLEAR /CLEAR DEVICE , WAIT FOR COMPLEIION

1034 00473 R 440577 R 182 cces /MAKE CONNECT A DISCONNECT (BURP)
1035 00474 R 000577 R CAL cces /DISCONNECT

1036 «ENDC

1037 00475 R 440570 R 182 PDVTA /POINT TC ASSIGN INHIBIT FLAG
1038 00476 R 705522 A «INH /INHIBIT INTERRUPTS,

1039 00477 R 160570 R DZM¥ PDVTA ///ZERD IT

1040 00500 R 705521 A +ENB ///ENABLE INTERRUPTS,

1041 00S0% R 000653 R CAL (10) ///EXIT

1042 /

1043 /

1044 /ABORT REQUEST,

1045 /

1046 00502 R 777000 A CDABRT LAW 17000 /MASK IV KEEP HALF wURD [U CHECK ABORI VALIDITY
1047 00503 R 510005 A AND 5,X /HAS TO BE ZERU 0 Be 0K

1048 00504 R 740200 A SZA /80 SKIP IF 0K

1049 00505 R 600116 R JMP EVMé /ERROR RETURNED IF NOT

1050 00506 R 200567 R LAC POVNA /MT THE DEQUE FUR THE ABORTED TASK

1051 00507 R 060647 R DAC* (R{

1052 00510 R 200564 R LAC RN /ABORT NOOE

1053 00511 R 060651 R DAC#* (R2

1054 00512 R 120715 R JMS* (OMTQ /TH1S ROUTINE DUES ALL wWORK

1055 /

1056 / NOW WAS THIS ABORT FUR AN OUTSTANDING READ?

1057 /

1058 00513 R 200564 R LAC RN /2+RN I8 STL NODE ADDR

1059 00514 R 340563 R TAD XADJ /USE AS IDENTIFILER

1060 00515 R 721000 A PAX

1061 00516 R 210002 A LAC 2,X

1062 00517 R 540556 R SAD STLA /SAME ADDR FOR LAST READ DONE

1063 00520 R 751004 A SKPICLAICMA /SKIP [F SAME, SET UP =t

1064 00521 R 600423 R JMP REQCMP /NUPE, wE'RE DUNE, GU GIVE BACK NODE EIC,
1065 00522 R 240571 R XOR RRN /NASTY, MAKES 0 IF NU READ NOw! IN PROGRESS
1066 00523 R 741201 A SNALICMA /SKIP [F READ IN PROGRESS, RECREATE ITS NODE ADDR!
1067 00524 R 600423 R JMP REQCHP /NOPE, JUST COMPLETE

1068 00525 R 060651 R DAC* (R2 /GIVE BACK NODE AND IOCD FOR SUSPENDED READ
1069 00526 R 200704 R LAC (POOL

PAGE 25 CDevss 021 CDseee CRIS/UCLIS CARD READER EDIT %020

1070 00527 R 060647 R DAC* (R1

1071 00530 R 120712 R JMS* (1oco

1072 00531 R 120713 R JMS# (NADD

1073 00532 R 750001 A CLAICMA /SET READ WUT HERE SwilCH

1074 00533 R 040571 R DAC RRN -

1075 +IFUND 0UC15

1076 LAC (CC1 /CLEAR DEVICE

1077 CRLC

1078 <ENDC

1079 » IFDEF UC15

1080 00534 R 100625 R JMS CLEAR /AND CLEAR FOR UNICHANNEL

1081 +ENDC

1082 00535 R 6n0423 R JMP REQCMP /DONE

1083 /

1084 /

1085 /

1086 /

1087 +EJECT

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

PAGE

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1108
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

PAGE

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1187
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1un
1172
1173

26

27

(o> P

00536 R
00537 R
00540 R

00541
00542
00543
00544
00545
00546

00547
00550
00551
00552
00553

XTI TDOBX T

CDeyuw

021

000000
707762
040000

706124
200407
741200
600551
040554
040562

200711
705504
200000
703344
620536

021

A
A
R

XTI

XT>» >

Task Development

CDesss CRIS/UCIS CARD READER EDIT #020

/
/ INTERRUPT SERVICE ROUTINE
/
INT 0
DBA
DAC START /SAVE AC
LIFUND UC15
CRRS /READ STATUS INTO AC.
DAC EV] /SAVE FOR TASK LEVEL PROCESSING,
AND (2) /CARD DUNE? BIT 16,
SYA
JIMP INTL /80. DUN'T CLEAR CARD DONE,
DAC CDON /PLACE 2 INTO COON TO SAY DONE
LAC (cc3) /YES, CLEAR CARD DONE, LEAVE
CRLC /INTERR, AND DCH ENABLED,
INT1 CRPC /CLEAR ALL BUT CARD DONE,
LAC cc4) /ENABLE INTERRS, DISABLE DCH
CRLC /NEEDED SINCE CRPC DISABLES INTERRS,
LENDC
/
JIFDEF UC15
CAPI /CLEAR FLAG FROM PDP=1
LAC POST /ARE WE WANTING AN INTERRUPT
SNA /SKI1P IF YES/USE VALUE TU SET
Jnp INTAC /NO DO NOTHING
DAC CDON /AS FLAG TO DISTINGUISH CARD DONE FROM CAL
DAC 16 /AND SET TG TO WAKE UP CAL LEVEL
JENDC
LAC (401000) /DECLARE SIGNIF, EVENT,
ISA
INTAC LAC START /RESTORE AC,
DBR
Jups* INT
JEJECT

C0.,sss CR15/UCI5 CARD READER EDIT %020

/
+IFUND UCIS

/SUBR. TO OUTPUT ERRUR MESSAGES Via ERRLUN.l AC SHOULD CONTAIN

/ADDRESS OF ERROR MESSAGE BUFFER.

/

TTYOUT o
DAC TECPB4 /SET CPB BUFFER ADDRESS,
CAL TE /TYPE ERROR MESSAGE,
CAL WFECB /WALTFOR EV,
JMP¥ TTYOUT

/

/ERROR MESSAGE BUFFERS AND TABLE OF PTRS,!:

/

ERRPT o+l
ERRMG1
ERRMG2
ERRMG3
ERRMG4
ERRMGS5

/

/

/

ERRMG1 ERRMG2=ERRMG1%1000/2+2
0

+ASCLI '#%%x CD READER NOT READY '<15>
ERRMG2 ERRMGI=ERRMG2¥1000/2+2
0

«ASCII '#¥% CD ILLEGAL PUNCH'<15>
ERRMG3 ERRMG4=ERRMG3%1000/242
0

+ASCII '#%% CD PICK ERRUR'<15>
ERRMG4 ERRMGS~ERRMG4%1000/2+2
0

+ASCII '**% CD DATA MISSED/PHOTO ERROR'<15>
ERRMGS5=,

JEJECT
/ ¥%%k¥% CARD COL TO ASCIL TRANSLATION TABLE *s#4%

/
/EACH TABLE ENTRY HEPRESENTS VALID ASCL1 CARD PUNCHES WITH
/THE FOLLOWING FORMAT:

/

/BITS 0 = § SIXBIT ASCII1 CHARACTER.

/BITS 6 = 17 CARD PUNCHES WITH THE FOLLUWING MAPPING:
/

/BIT 6 = ZONE 12

/BIT 7 = ZONE 11

/BITS 8 = 17 = ZONES 0 = 9.

/THE ASSEMBLER BUILDS THE TWOS COMPLEMENT OF BIIS 6e17 VIA THE
/7777\+1 OPERATION. THE TABLE [S ORDERED ACCORUING I0 INCREASING
/MAGNITUDE OF CARD PUNCHES (CONSIDERED AS 12 BIT RIGHT JUSTIFIED
/INTEGER VALUES),

/EXAMPLE: ASCII '9+ Has FOLLOWING TABLE REPRESENTATION:

Figure 4-2 (Cont.)

XVM CR1l XVM/RSX Handler

4-47

PAGE

1174
1175
1176
1177
1178
1179
1180
i181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

PAGE

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

28 CDyers 02t CD.ese« CRI5/UCL15 CARD READER EDIL %020
/
/ 710001\7777+1
/
/WHERE 0001 INDICATES ZUNE 9 PUNCHED AND 71 IS SLXHIT ASCII '9!
/

/GRAPHIC CHARACTERS FOR 026 PUNCHES ARE IN PARENTHESES BELUW:
/

Task Development

CDTABL CDTABL+1

29 CDusve 021

CDTLN1
CDRALT

400000
T10001N\7777+1
700002\7777+1
670004\7777+1

CP 340006,420006
660010\7777+1

CP 470012,750012
650020\7777+1

CP 360022,470022
640040\7777+1
000042\7777+1
630100\7777+1

CP 750102,430102
620200\7777+1

CP 370202,720202
610400\7777+1
601000\7777+1
321001N\7777+1
311002\7777+1
301004N\7777+1

CP 451006,7710006
271010N\7777+1

CP 431012,761012
261020\7777+1

CP 421022,371022
251040\7777+1

CP 501042,451042
241100\7777+1
S41102\7777+1
231200\7777+1

CP 731202,351202
571400\7777+1
552000N\7777+1
222001\7777+1
212002\7777+1
202004\7777+1

CP 462006,3420006
172010\7777+1

CP 762012,732012
162020\7777+1

CP 332022,512022
152040N\7777+1
522042\7777+1
142100N\7777+1

442102\7777+1
132200N\7777+1

CP 722202,412202
122400\7777+14

CP 534000,464000
114001N\7777+1
104002\7777+14
074004N\7777+1

CP 414006,3640006
064010\7777+1

CP 744012,534012
054020\7777+1

CP 354022,504022
044040N\7777+1

CP 514042,744042
034100\7777+1
§64102\7777+1
024200\7777+1

CP 774202,334202
014400\7777+1
«=1=CDTABL/2
4402

<ENDC

LEJECT

Figure 4-2

/BLANK
/9

/8

/7

/" (N)
/6

/= (1)
/5

/y (7))
/4

/@

/3

/% (=)
/2

/% (2)
/1

/0

/2

124

/X

/7 (%)
/W

/> (%)
/v
/RIGHT ARROW (")

/NO(8)
/3 ()

/) D)

CDseee« CR1S/0UC15 CARD READER EDIT %020

/8
/K
74
/J
/& (+)
/1

(Cont.,)

XVM CR11 XVM/RSX Handler

PAGE

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

30

CDuere

00554
00555
00556
00557
00560
00561
00562
00563
00564
00565
00566

00567
00570
00571

00572
00573
00574

R

021

00000t
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
7717177

000000
000000
000000

A

> >

Task Development

CDseso CRI5/UCLS CARD REAVER EDIT #020

/
/ *¥¥%%3% INTERNAL VARIABLES #%xx«¢
/

CDON
TST
STLA
ARE

CDRVAL
CDWDCT
/

/

/ SAVE
/

ICa
CDR7CT
CDR5CT
CDTPTR
COTLEN
cD7700
CDCPTR
CDRWD3
CDRWD2
CDORWD1
EV1

/

/
PDVNA
POVTA
RRN

TX12
TX13
TCWC

[-X-N- Y- N X-T5

o0 O

«IFUND UC15

/CARD DONE FLAG,

/TEMP STORAGE FOR STATUS,

/STL NODE, ADDR,

/ABORT REQ, EV,

/CARD COL COUNT USED IN TRANSLATING CARDS
/INTERNAL KVENT VARIABLE

/IRIGGER EVENT VARIABLE

/XR ADJUST CUONSTANT TU SUBTRACT PAGE BITS
/ADDRESS OF THE REQUEST NODE PICKED FRUM AUEUE
/BUFFER OVERFLOW FLAG WORD

/AORD COUNT CHECK WORD SET FROM 1/0 REQUEST

SOME RUOM FOR UC15, THESE ARE NOT NEEDED

70000

COO0CO0OO~NOOOCCO

+ENDC
11711177
0

0

0

<EJECT

/INTERNAL BUFFER CURRENT ADDRESS POINTER
/SEVEN COUNTER USED BY THE 5/7 ASCII PACKING ROUTINE
/COUNTER FOUR 5/7 ASCI1 PACKING

/POINTER TU TRANSLATION TABLE

/TRANSLATION [ABLE LENGTH

/USED IN CARD TRANSLATION

/POINTER TO CURRENT INTEM IN TRANSLATION TABLE
/7

// THREE WORD SHIFT REG, FOR 5/7 ASCII PACKING
/7

/CARD READER EV,

/PHYSITAL DEVICE NODE ADDRESS

/ADDRESS OF ADDRESS OF TEV IN PHY OEYV NODE
/READ BEING PRUC., FLAG, =1 IF NOT BEING
/PROCESSED., READ REQ, NODE ADDRESS IF BEING
/PROCESSED,

/TEMP, FOR X12 STOUR,

/TEMP, FUR X13 STOR,

/TEMP. FOR REQ., WwC,

Figure 4-2 (Cont.)
XVM CR1l XVM/RSX Handler

Task Development

PAGE 31 CDeass 021 CDusss CR15/UC15 CARD READER EDIT #020

1293 /

1294 / ¥%¥%% CAL PARAMETER BLOCKS ##¥¥%%%

1295 /

1296 /

1297 00575 R 000020 A WFICPB 20 /WAIT FOR TRIGGER CPB
1298 00576 R 000562 R TG

1299 /

1300 00577 R 000011 A ccep 11 /CONNECT CP8

130t 00600 R 000561 R EV

1302 00601 R 000015 A 15 /LINENUMBER

1303 00602 R 000536 R INT /ENTRY ADURESS OF INTERRUPT SERVICE ROUTINE
1304 /

1305 +IFUND UCiS

1306 /

1307 / UCL5 SAVE SPACE BY LEAVING OUT SOME CAL'S

13080 /

1309 /

1310 /

1311 WFECB 20 /WALIT FOR EV CPB

1312 EV

1313 /

1314 oCcPB 12 /DISCONNECT CPB

1315 0 /EV ADDRESS

1316 15 /INTERRUPT LINE NUMBER
1317 INT /CURRENT INTERRUPT TRANSFER ADDRESS
1318 /

1319 TE 2700 /WRITE TU ERRLUN,

1320 EV

1321 ERRLUN /WRITE OUT THE ERROR MESSAG I'D THE DESIRED
1322 /TELETYPE

1323 2

1324 TECPB4 XX

1325 /

1326 MTCPB 13 /MARK TIME REQ,

1327 EV

1328 12 /12 UNITS.

1329 1 /UNIT (TICK),

1330 /

1331 WFCRCB 20 /WAIRFOR CR INTERRS,

1332 EV1

1333 /

1334 WFCRCD 20 /WAIT FOR CARD DONE FLAG TO BE SET,
1335 CooN

1336 /

1337 «ENDC

1338 /

1339 /

1340 «IFDEF UC15

1341 /

1342 / I1/0 INFORMATION , ROUTINES , ETC. FOR UC15

1343 /

1344 / TCB (TASK CONTROL BLUCK) TELLING PDP=11 TO SEND US' A CARD

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

1345
1346
1347
1348
1349
1350
13514
1352
1353
1354
1355
1356
1357
1358
1359
1360
13614
1362
1363
1364
1365
1366
1367
1368
1369
1370
13711
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

32

Clouus

00603
00604

00605
00606

00607
00610

00611
00612
00613

00614
00615

00616
00617
00620
00621
00622
00623
00624

00625
00626
00627
00630
00631
00632
00633

00634
00635

00636
00637
00840

R

x o o x;

R

R
R

R

R

021

026401
000005

000000
000000

Q00001
000000

000000
002600
000000

000603
000611

000000
140605
140613
706001
600621
706006
620616

000000
140407
140554
200615
100616
000634
620625

000020
000613

744020
340716
540717

» > > x>

>0

TOXTTLT> E R - i E

x>

o D>

Task Development

CD.vees CR15/UC15 CARD READER EDIT #020

/

TC8 APISLT*400+APILVL /TELL PDP=1] WHERE TO COME BACK
DEVCUD /PIREX CODE FOR CD;THE 200 BIT SAYS

/ /WAE ARE NOT TO BE SPOOLED.

EVil] /EVENT VARIABLE FROM PDP11 TO US
o /DUMMY, HIGH PORTION OF 18 BIT

/ /ADRESS. NOT PRESENTLY USED
I8UF /POINTER TO BUFFER TD PUT CARD IN
0 /UNLT #; FOR FUTURE GENERATIONS,

/

/ TCB TO TELL PDPi1 TU CLEAR UUT CARD READER DEVICE

/

TCBK 0 /THIS WORKS, SEE PIREX FOR INFO,
DEVCOD&177%400+200

EVILIK 0 /EVENT VARIABLE FOR CLEAR OPERTAION

/

/ POINTERS TO TCH, TDBK

/

TcBP cB

TCBKP TCBK

/

/
/ CDIU IS THE SUBROUTINE TU SEND A ICHB [0 THE PDPw1}
/

/ CAL WITH THE ADRESS UF THE ICB IN THE AC

/
[op241] 0
DZM Evil /CLEAR ONE CUMING FRUM POP=1{
DzM EV11K /AND THE OTHER ONE, In CASE II USED
SI0A /SKIP IF PDP=i1 CAN TAKE REQUEST
JMP o=l
LIOR /TELL [l TO DU TCB WHOSE ADDRESS IN AC

JMP¥ CDIU /THAT'S ALL THERE 1S TO IT,

LEAR]
DZM PAST
DZM CDON
LAC TCBKP /TCB FOR CLEAR
JMS CchIUu
CAL WFCLER /wWAIT FUR CLEAROUT
JMP¥ CLEAR
/
WFCLER 20

EVi1K
/ CDUCEC EXAMINES NEGATIVE EVENT VARIABLES FROM PIREX

/
CDUCEC CLL!RAR /CLEAR OTHER TUOP BIT
TAD (600000 /SIGN EXTEND TU PDP=15 WORD
SAD (777001 /THIS ONLY 'LEGAL' VALUE Al PRESENT

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

PAGE

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

PAGE

33

34

CDeree 021
00641 R 600171
00642 R 100426
00643 R 777177
00644 R 040571
00645 R 600060

000000
00646 R 000252
00647 R 000101
00650 R 000054
00651 R 000102
00652 R 000123
00653 R 000010
00654 R 000562
00655 R 070000
00656 R 000337
00657 R 000777
00660 R 000024
00661 R 000025
00662 R 000026
00663 R 000036
00664 R 000017
00665 R 000325
00666 R 000332
00667 R 200007
00670 R 000103
00671 R 000104
00672 R 000342
00673 R 000032
00674 R 000013
00675 R 000003
00676 R 104611
00677 R 000340
00700 R 000445
00701 R 001005
00702 R 000377
00703 R 000020
00704 R 000240
00705 R 000273
00706 R 000177
00707 R 700000
00710 R 064000
00711 R 401000
00712 R 000345
00713 R 000107
00714 R 000060
00745 R 000361

CDyye. 021
00716 R 600000
00717 R 777001

S1ZE=00720

PP EHEETOPP L PP R RPIPEPEEPRTPDITOIEN

Task Development

CDsees CRIS/UC15 CARD READER EDIT %020

*L
*L
*L
L
*L
*L
*L
L
*L
L
L
*L
*L
*L
*L
*L
L
*L
*L
*L

*L
*L
*L
*L
*L
*L
*L
XL
L
xL
*L
*L

*L
*L
L
L
L
L

JMP RETRY
/
JMS SEVRN
/
/
LAwW -1
DAC RRN
JMP P4
/
/
+ENDC
+END START

/THAT SAYS PIREX IS5 GUT OF NUDES,
/WE SHOULD TRY AGAIN TO GET ONE
/OTHERS, RETURN NEG VARIABLE AS EV,
/THIS 18 SLIGHTLY FLAKEY, 8UT WAE
/REALLY SHOULD NEVEK GET HERE!{!7
/SAY NO MORE READ QUTSTANDING

/BACK TO LOOK FOR MURE WORK

CDeoes CR15/UC15 CARD READER EDIT #020

*L
L

NO ERROR LILINES

Figure 4-2 (Cont.)
XVM CR1ll XVM/RSX Handler

4-52

Task Development

4.6.3.3 Requests - Following handler initialization, requests can be
processed. Note that the request dequeuing algorithm (see Figure 4-2
lines 352-407) is executed whenever Q-I/O places a request node in the
list associated with the handler's PDVL node or whenever an interrupt
for the device has occurred on the XVM. The latter condition implies
that the handler's interrupt service routine (Figure 4-2, lines
1091-1120) will set the trigger event variable on each interrupt.

4.6.3.4 ABORT Requests - Because of the nature of the UNICHANNEL
configuration, ABORT requests should be handled on a high priority
basis. Hence, whenever the trigger event variable is set, the handler
should first check to see if an ABORT request has been issued. (Figure
4-2, lines 353-357). This condition can be tested using the following
algorithm:

LAC TG /GET THE TRIGGER EVENT VARIABLE INTO THE AC
RTL /MOVE THE ABORT BIT INTO BIT ZERO OF THE AC
SPA /SKIP IF ABORT BIT IS NOT SET

JMP PICK /ABORT REQUEST~DEQUEUE AND PROCESS IT
. /NOT AN ABORT REQUEST-CHECK OTHER
. /REASONS FOR HAVING TRIGGER EVENT VARIABLE SET.

4.6.3.5 Interrupts - If the trigger event variable was not set due to
an ABORT request, either PIREX has issued an interrupt or a new
request for I/O is pending. Before checking for new requests, the
handler should see if an interrupt occurred (see Figure 4-2, lines
359-362). If it did, the handler should check to see if an interrupt
was requested. Unrequested interrupts should be ignored but the
handler should finish processing the outstanding I/0 request if the
interrupt indicates that I/0 is now complete.

If the trigger event variable was not set due to an interrupt and no
I/0 is being processed by PIREX, the handler can pick off the new I/0
request and begin processing it (see Figure 4-2, lines 368-407).

On ABORT requests, the handler should determine if I/0 is in progress
on the PDP-11 for the task being aborted (see Figure 4-2, lines
1058-1067). 1If so, the handler should issue a "clear device directive"
to PIREX to stop the I/0O in progress (see Figure 4-2, lines 1073-1080).

Task Development

The "clear device directive!" must also be issued whenever a DISCONNECT

and EXIT request from the MCR function REASSIGN is processed (see
Figure 4-2, line 1033).

4.6.3.6
usually

READ and WRITE Requests - READ and WRITE request processing

involves the following procedures:

Checking the range of the issuing task's TCB and buffer.

Making data conform to PDP-11 standards for WRITE requests
and XVM standards for READ requests.

Sending a TCB directive to PIREX.

Waiting for PIREX to complete the operation initiated by
sending the TCB directive.

Checking the event variable sent back to the handler by
PIREX.

Setting data into the issuing task's request buffer for READ.

Sending an event variable to the task which initiated the
request for I/0.

The following is a brief outline of the procedure used by the UNI-

CHANNEL Card Reader handler when it processes a read request. (Refer

to Figure 4-2).

10.

Dequeue the I/0 request node (lines 352-407)

Check the range of the task TCB and buffer (lines 440-465).
Clear the TCB event variable (line 1372).-

Clear the "I/0 Done" flage (line 642).

Set the "Interrupt Expected" flage (lines 640-641).

Issue the READ TCB to the Card Reader Driver in PIREX
(lines 1374-1376).

Wait for the Trigger Event Variable (line 352).

When the Card Reader Driver has completed the request, the
Card Reader handler interrupt service routine sets the
Trigger Event Variable and the "I/0 Done" flage (lines
113-114).

The handler then checks the Event Variable sent back by
PIREX (lines 653-656).

Convert the data to XVM card format and transfer it to the
task's buffer (lines 670-879).

Task Development

11. Set the task's Event Variable {(lines 880-881).

12. wait for the next request (line 352).

Note that in order for a UNICHANNEL handler to function properly, the
PDP-11 must be able to access the handler's internal buffers and TCBs.
Hence, all locations within these TCBs and buffers must be within the
common memory accessible to the PDP—ll.l Also, note that the XVM/RSX
POLLER task should be modified to interrogate PIREX concerning the
status of the new device.

4.7 BUILDING A XVM/PIREX DEVICE DRIVER

A device driver is a software routine that performs rudimentary I/0
functions. PIREX device drivers typically operate in conjunction with
more complex XVM handlers. While a rudimentary device driver is typical,
a PIREX task can be as complex as a full handler. The PIREX XY driver
is a good example of a very complex driver. The PIREX line printer
driver, a typical rudimentary driver, will be used to examine the
construction of a device driver.

4.7.1 General Layout

The general layout of a driver task (see Figure 4-3 and Section 4.5)
consists of:

1. Entries on PIREX internal lists.

2. A stack area which will be used when the task is executing.

3. The address of a device control register. This is used to
stop the device during STOP I/0 requests. Dummy addresses
are used for tasks which are not device drivers.

4. A 2-word busy/idle switch used to store the caller's 18-bit
TCBP. When the busy/idle switch is zero, the routine is
not busy.

5. The task request setup/processing section.

6. The task interrupt processing section, if the task is a
device driver.

1Depending on Driver task design the buffers for an NPR device may
not have to be in common memory.

Task Development

The task request setup/processing section obtains the parameters from
the TCB and uses them to set up the referenced device or process the
request. Entry into this section is made from the ATL scanner or
DEQU with the current task stack area active at the priority level
associated with that task. All general purpose registers are avail-
able for use by the current task at this time. The TCBP is stored in
the busy/idle switch preceding the request section and signifying that
the task is busy. Once some operation is underway or completed, the
task returns to the ATL scanner by issuing the "SEXIT" macro instruc-
tion (refer to Section 4.7.2.4).

If the task is a device driver, the interrupt section is called at the
completion of an I/0 request. All device interrupt priority vectors
specify priority 7. This is done to allow the interrupt routine to

save the general-purpose registers on the current task stack pointer

and lower the system to the priority level of this task. (The interrupt
section accomplishes this by calling R.SAVE.)

Control is transferred to the driver, which then checks for errors,
stores status information into the TCB, clears the device busy switch
(the driver becomes idle when the busy switch is cleared) and sends

an optional interrupt (via SEND15, see Figure 3-6) to the system in-
forming it that the request has been processed. The driver then trans-
fers control to the routine DEQU (see Figure 3-7) to determine if more
requests are in its TRL. If not, control is transferred to the ATL
scanner, after saving the task stack pointer and setting the task
status to the wait state in the ATL node.

4.7.2 Task Program Code
The task program code is necessary to carry out the task's function.
4.7.2.1 Code Sections - The program code section of a device driver

is composed of three or four of the following subsections (refer to

Figure 4—3).1

1Page number refers to the page number at the top of the PIREX

listing.

PIREX,142
LINE PRINTER DRIVER FOR LP11/15

84
58
56
57
58

86754
07054

e’e5e
#7069

p7e62
@762

-4 1.1
07072
B7078
97102
e71086
0711
07112

B7i16
07120

07124

07132
07136
07142

27146

87184

177814
17758168
200008
LLLLRE)
aeea14
201284
21202
022ne4
206414

177914

220000
LLLLT L]

283%a68y
17239m
218720
1777688
205080a
200n14
916004
gedaim
205780a
paengs
12403
296301
p6670
170722
112102
242709
177 400
112767
poRmys
LEELET]
26270y
202092
112724
LLILEY]
105087
LLLLEE)

p32787
142300
171672
081427

Task Development

MAE1{ XYM ViADDO PAGE 28

+SBTTL LINE PRINTER DRIVER FOR LP11/15

«EVEN

’

LPCSRa 77544

LPRUFS177516

LLPSAnS

LPYOTH{2

LPSTATR4

LPESTILP EST+4

LPUNNSLP EST+2

LPrCoDm4a

LPFOF=8414

’

!

]

'

!

!

'

!

!

’

!

!

'

’

’

!

!
«BLOCK
«WORD
+WORD
LWORD

'

LPs
CLR
Moy
CLR
MOV
TST
BMY
ASL
ADD

183 MOVB
BIC
MOVB
ADD
mova
CLRB
« IFNDF
BIT
BEG

JADUR IN PIREX E

RROR TABLE FOR NOT READY

JADDR FOR UNIT # (FOR NOW @)

JLINE PRINTER TA

SK CODE

JEOF CODE(DATA) FOR SPOOLING

8,4EAESTK*4
LPCSR

LP.CL

LP=2,R0
LFSTAT (R®)
LPSA¢2 (RO),RE
LPSA(RD)

1§

R

MEMSIZ,RY

(R1)+,R2
#177400,R2

#15,LPEOL

#2,R1 1INC Ry

MAKE THE POP=15 DO ALL THE WORK, THE PDP=11 SIMPLY GET 8 A COUNY

OF CHARACTERS TO PRINT OUT, WE TREAT THE CONTROL CHARACTERS

12,15, AND 14 ONLY, A MINUS CHARACTER I8 CONVERTED INTO MINUS

THAT NUMBER OF SPACES, NOTE ALL REAL ASCII CHAR'S HAVE A ZERO LEADING BIT!
EACM LINE HAS AN IMPLIED CARRIAGE RETURN THAT IS ADDED BY THE DRIVER
RATHER THAN SENT BY THE POPmi3

NOTE, IF HEADER WORD OF BUFFER MAS 42@ BIT SET, IT IS
IMAGE MODE, AND WE NIETHER BUT ON LF OR CR}}

CALL TO ROUTINE HAS ADDRESS OF TCB IN HANDLER BUSY (IDLE) HEGISTER

JADDRESS OF LPCSR CONTROL STATUS

’ REGISTER USED TO RESET UEVIGE

' ON STOP 1/0 OPERATIONS,

J1TCB POINTER (EXTENDED BITS)

ITCB POINTER (LOWER {6 BITS), THIS

! WORD I8 USED AS THE 1DLE/BUSY

' SWITCH FOR THE DEVICE DMIVER,
PCLEAR OUT ANY PENDING TIMER REGUESTS FUR US,
JSETUP R@® TO POINT YO TCB

JCLEAR STATUS FLAG IN TCB

JGET BUFFER START ADDRESS

JOONIT RELOCATE ADDRESS IF BIT 15

! I8 ON,

JRELOCATE ADDRESS (WORD YD BYTE PUINTER)
J(* 1178 OWN LOCAL MEMORY)

JCLEAR OUT TOP OF REGISTER

JDEFAULT, ASCII, HERE 1S <CR>

BY 2 (BRwi34)

#12,(R1)e IDEFAULT, PRECEED LINE WITH LINE FEED
LPERWT JRESET ERROR WAIT SWITCH
SNOSW THML24WN1F SNOSW, DISABLE ALL SWITCH INTERACT
#140000,S8P0LSWw)SPOOLER ENABLED & RUNNNG
6s GO TO DISABLE HAL* AT EQOF (BRw»1385)
Figure 4-3

UNICHANNEL LP

Driver

PIREX,142

Task Development

MACIY XVM VIAQGQO® PAGE 28¢

LINE PRINTER DRIVER FOR LP14/13

61
62

63
64

68

66
67

70

74
72

73
74
78
78

77
78

79
L]

81
82
83
84
L1}
L]]
87

L0
94
92

87158

07162
07164

o747
27472

e7176

7284
7206

7214

07222
p7222
07224
07225
7226

07232
07234
p7240
7246
27252

07254
07286

87262
27264

e727e
07272
7274
w7276
27302
B7308
87312
p7316
R7324
P7324

p7326
07327

222711
006414
9142y
183787
280554
001423
10508y
CLEEPY)
32787
a9%0@2
1703684
LLIVEL
g127ey
pn7828
172184
a12787
20017m
172144

LLEET
L1]
n02

125287

CLIETY

LLIIT.F

{a5a8y

L1 LLY]

13278¢
.LILT.
1777758
pA1403
1085087
P00468
(LI Y FY]
12271+
0020t a
20140%
122714
seonLs
pat1402
LLEATX
205209
010267
200434
0102167
gAQ426
105087
poRa2s
10587687
17@200n
nsarsy
LLLRY 1]
170470

200004
a0e
ag2

5%1

281

381

481

CMP

BEQ
TsTe

BEQ
CLRB

BIY

BEG
MgV

MOV

8EXIT
1ot
LBYTE
INeB

BR
CLRB

+ENDC
BITE
BEQ
CLRB

BR
CMPB

BEQ
cCMPB

BEQ
DEC
INC
MOV
MOV
CLRB
TSTB
BIS
SEXIT

10T
BYTE

MLPEQF, (R1)

53
LPEFWT

23
LPEFWT

H2,5W

23

HLPECHK,LP,

#170,LP,CL

WAITSY

@)WAITSY
LPEFWT
3
LPEFWT
#1,=3(R1)
38

. LPEOL

43
#14,(R1)

48
#15, (R1)

43

R1

R2
R2,LPBTCT
R1,LPBUFF
LPTAB
LPBUF

¥100,LPCSR

WALITSTY

BIWALITSY

" JEOF RECORD?

Cl#2

JCURRENT TCB CONTAINS EOF (BW=135)
JWAS LAST RECORD AN EQF ? (BR=135)

INO = BRANCH TO NORMAL CODE (BRw135)
1YES » CLEAR SWITCH FOR NEXY USE (BR=3133)

118 SWITCH 2 UP ON 11 CONSOLE 7 (BR»138)

INO = RESUME NORMAL CODE (BR=135)
IYES = SET UP CLOCK (BR=135)

JYWNO SECOND RETRY (BR=133)

TEXIT TO SYSTEM

JSET EOF FLAG FOR NEXT TCB (MRwi35)

JRESUME NORMAL CODE (BR=133)

JCLEAR FLAG = IN CASE SPOOLER JUST TURNED OFF (BRw135)
1400 BIT SET IN HEADER IF IMAGE

INOT IMAGE, CHECK FORMS CONTKOL

JIMAGE, DON'T FORCE CR AFTER MESSAGE

FALLOW ALL FORMS CONTROL
IFIRST CHAR FORM FEED?

TYES, DON'T ADD LINE FEED YO LINE
JFIRST CHAR CARRIAGE RETURN

JYES, DON'T ADD LINE FEED TO LINE
TMOVE POINTER BACK YO LINE FEED
71COUNT ADDITION OF LF YO BUFFER
TSAVE COUNT

7SAVE POINTER

JTHISTORY 8AYS THIS HERE
JENABLE INTERRUPYS TO LP GOING

JEXIT IN A WAIT STATE AND RESCAN

[} THE ATL NOW,

Figure 4-3 (cont)
UNICHANNEL LP Driver

PIREX,142 MALLY XVM V1APO@ PAGE 29

LINE PRINTER DRIVER FPOR LP11/15

1] LP INTERRUPT ENTRANCE

2 ’

3 90733 LPINTI

4 0O7339 04278y BIC #1900, PCSR
20040n
170158

5 2273368 @en4nsy JSR RO,R¢SAVE
172444

6 087342 20Pang4 4

7 007344 016700 MOV LP=2,R0
177%10

g 007352 @R194y BEQ LPXT

10 07352 on37ey TST LPCSR
1781368

1 87366 100454 BMI LPERR

12 2736 0085067 CLR LP,CL
172002

13 27364 LPLOPS

14 27364 105767 TSTB LPCSR
170124

15 97370 10004y BPL LPSTIL

16 @7372 105767y T8TB LPTAB
2Ad342

17 07378 19942, BMI 4s

18 97400 0n5367 DEC LPBTCT
2R0332

19 07404 100424 BMI 5s

20 07406 105777 TSTB OLPBUFF
on0322

21 07412 100408 BMI 8s

22 07414 117787 MOvVe OLPBUFF,LPBUF
200314
170074

23 97422 onB267 INC LPBUFF
LLLATY]

24 07428 A%07588 BR LPLOP

25 ’

26 Q7430 117787 631 MOVB CLPBUFF,LPTAB
220300
00302

27 987436 005287 INC LPBUFF
eeR272

28 07442 105287 43 INCB LPTAB
908272

29 97448 1127687 Move #40,LPBUF
000040
1728042

30 37454 000743 BR LPLOP

31 07456 105787 5% TSTB LPEOL
pRazsn

32 07462 gai4ny BEQ 7%

33 07464 118787 MOvVB LPEOL,LPBUF
200252
17020824

34 97472 005280 78 INC LPSTAT(R@Q)
[1-LLEW]

35 07476 00042y BR LPXIT

36 ’

37 07500 @52787 | PsTYL?! BIS #100,LPCSR
29210n
170008

38 P7508 00041y BR LPXITY

39]

40 9751p 18526y LPFRPE INCB LPERNWY
ae02p7

41 Q7514 112787 MOvVe N4,LPEST
009904
171842

Task Development

JDISABLE LP INTERRUPT

71SAVE REGISTERS

iTASK CODE
1GET TCB POINTER

JIGNORE IF IYS ALREADY BEEN STOPPED BY

} A STOP I/0 REQUEST,
JCHECK FOR ERROR

JYES

JCLEAR QUY ANY PENDING TIMER REQUESY FOR U8,

J18 PRINTER CURRENTLY GOING?

I1YES? FORGET CHAR FOR NOW
FIN TAB EXPANSION TO SPACES?

1YES
10ECR CHAR COUNT

JWENT TO =1, MAKE CR TO FINISH LINE
JMINUS BYTE IS TAB EXPANSION COUNT

J18 ONE, GO SET VP

JSTICK CWAR INTO LINE PRINTEN BUFFER

TMOVE POINTER TO NEXT CHAR
160 DO NEXT

JSEY UP TAB COUNT (MINUS, A LA 15)

JCOUNT A SPACE FOR THIS TAB
7SPACE TO LINE PRINTER

}GO DO NEXT

JIMAGE OR ASCII

FIMAGE, DON'T FORCE <CR>

JASCII, HERE I8 <CARRIAGE RETURN>

JSET REV TO GOOD COMPLETION

JENABLE INTERRUPT ON LP

JRESTORE R@~R5 AND RETURN
1SET ERROR WAIT S,
TERROR CODE 31,NOT READY TO TABLE

Figure 4-3 (cont)
UNICHANNEL LP Driver

FIREX,142 MAGL1Y XVM ViAQQQ
LINE PRINTER DRIVER FOR LP11/153

42 97522 9127687 LPFERR{1 MOV
0087848
171840

43 27330 nt12787 MOV
22017
171630

44 P7536 AO0167 LPYITIt JMP
173618

45]

46 07542 105487 LPxITt CLRB
171516

47 07548 05278y B1S
PNd34n
170222

48 07554 0abosy CLR
187734

49 n756p 0t27m¢ MoV
LLLLLT

50 27564 0167an MOV
177270

81 27870 CALL

27570 pR4768Y JSR

173826

52 07574 LPxTt

853 87574 05278y BIS
APR34n
178174

54 27602 005087 CLR
177252

85 @760s om3pay CLR
177244

56 07612 ni270y MoV
207082

87 27618 21270, MoV
00148

58 07622 and1ay JMP
173480

59]

-]} '

84)

62 ’

63 '

64 ’

65 @7628 205787 _PFCWK! TST
177228

66 A7632 Pd143y BEQ

87 07634 032787 BIT
an0ne?
167728

Task Development

PAGE 29+
SLPCHK,LP,CL*2 JADOR, FDR TIMER REQ,
#170,LP,CL 12 SECS, IN TICKS(OCTAL)
DEQUY JSCHEDULE NEXT TASK
LPEST PINDICATE SUCCESSFULL OPERAT1ON
#349,P8 JINHIBIT INTERRUPTS
LPCSR JSHUT DOWN DEVICE
#1,R1 JTELL CALLER DONE
LP=2,RQ JGET TCBP
SEND1S JTELL CALLER DONE
PC,SENDYS
#34p,PS FINHIBIT INTERRUPTS
LPw2 JCLEAR BUSY(IDLE) FLAG
LPmd
HLP,RY JOEQUEUE ANOTHER REQUEST IF aNY
#LP,LH)RY ! IN THIS DRIVERS DEGUE,
DEQU

SUBKOUTINE TO FIELD CLOCK COUNT=DOWN

LP=p2 JHAVE WE BEEN DISABLED 7 (Br=133)
LPCX JYES = RETURN TO CLOCK = NO RETRY (BRw135)
H2,8W JNO = IS SWITCH 2 STILL UP ? (BR={35)

Figure 4-3 (cont)
UNICHANNEL LP Driver

60

Task Development

PIREX,142 MACLY XYM VIAQDD PAGE 29+
LINE PRINTER DRIVEn FOR LP{1/1%

C8 97642 pOlaY,; BNE LPCXIT

69 07644 noB4pa BR LPCLK

70 07646 poBrey LPeHK: TST LPw2
177208

71 07652 a@l42y BEQ LPCX

72 97634 pasysy TST LPCSR
167834

73 07660 100422 BMI LPCXIT

4 87662 212702 _LPrLxt MOV ¥LPTCODw2,R2

pRgayin

75 27868 216204 MOV ATLNP(R2),R1
PA1144

76 07672 a1278y Mov HLP,LPw12
re7a82
17718n

77 07700 42784 BIC #¥17,A,TS(R1)
222917y
aneans

78 @77as8 012769 Moy ¥LPw26,4A,8P(RY)
an7034
[LLLLY

79 @7714 anb2pso ASR R2

80 07716 11628y MOvVB LEVEL (R2),LP~1n
0211258
1774128

Bf 07724 oa02qay RTS PC

82 27726 p1271m LPCXITI MOV #1709, (RQ)
aga(7a

83 97732 090207 LPeX: RTS PC

84 [}

85 @7734 000000 LPRUFFt WORD ?

86 97736 anAnas LPATCT! ,WORD @

87 87740 anonng LPTARI _WORD [}

88 07742 Ane (PEOLY LBYTE [}

89 97743 20n LPFRWT: ,BYTE [/}

90 p7744 2an | PFEFuTt ,BYTE 2

91 2EVEN

92 ’

TYES = SET UP CLOCK RETRY (BR={35)
IND « SET UP RETRY OF TCB (BR=135)

THAVE WE BEEN

FIF YES, EXIT, LEAVING CLOCK DISABLED (BR=
JDOES ERROR STILL EXIST 7 (Brw135)

JYES « SET UP CLOCK RETRY (BN=133)
JSCAN ATL FOR OUR NODE (BRwiy5)

JRESTART AT BEGINNING OF REQ,

TR POINTS TO OUR NODE, MAKE RUNNABLE

18ET UP STACK

DISABLED

POINTER

JMAKE BYTE ADDRESSING

ISET UP PS

JRETURN TO CLOCK (BR=135)
PRO POINTS TO TIMER ENTRY

FRETURNS TO CLOCK

IBUFFER POINTER

FBYTE COUNT
FTAB LOCATION
12 IF IMAGE,
JMAKE EVEN

JEOF WAS LAST RECORD FLAG (BR=135)

15 IF ASCI1

JMAKE EVEN (BRw135)

Figure 4-3 (cont)
UNICHANNEL LP Driver

135)

Task Development

1. Equates, device locations, etc. (Page 28, lines 7-15).

2. Tnitialization and I/O request section (Page 28, lines 1-90);
used to set up and initiate a device operation.

3. Interrupt section, used to respond to the completion of a
device operation and to check for errors (Page 30, lines 1-59).

4. An optional clock wake-up section; used to check the correc-
tion on an error condition on the clearing of a wait-at-end
of file condition and either retry the offending operation
or set another wake-up call (Page 29, lines 61-91).

4.7.2.2 Task Entry - Initialization - When the task is initially
called, the user stack area is reset. Execution normally begins at
the first location of the program code. At this point, all general
purpose registers are available for use by the task. If the task is
interrupted by a higher priority task before completing the request,
execution will resume at the point of interruption when program control
is returned. Various steps in device driver (Figure 4-3) initiali-

zation include:1

1. Clearing out any pending timer requests (if the task uses
wakeup services). (Page 28, line 43).

2. Setting up a pointer to the data buffer and relocating the
pointer value if it comes from the XVM (Page 28, lines
44-50, 74-87).

3. Various device dependent operations (Page 28, lines 51-56).

4. Detect and initiate halt at end of file procedure (Page 28,
line 57-73).

5. Start up the device (Page 28, line 88).

6. Exit in a WAIT state (Page 28, line 89) until reawakened by
an interrupt (see Section 4.7.2.4).

4.7.2.3 Interrupt Processing - An interrupt transfers control to the
device driver interrupt section at priority 7. Interrupt processing

(Figure 4-3) is composed of the following steps:

1. Disable the device interrupt (Page 29, line 4).

2. Save the interrupted task registers switch stacks and drop
down to the task's actual priority as specified in the LEVEL
table. This is all accomplished by a JSR RO, R.SAVE (Page 29,
lines 5 and 6). R.SAVE is called the task's "TCN" as a
parameter and passed.

1Page number refers to the page number at the top of the PIREX
listing.

Task Development

3. Test the task busy idle switch to see if the request has been
cancelled (Page 27, lines 7 and 8). 1If it was cancelled,
use the normal DEQU exit without sending a completion message
to the caller (see Section 4.7.2.4).

4. Perform task interrupt processing and error checking (Page 29,
lines 10-36).

5. If a correctable error is detected, set the error code in the
DEVST table. This error code should indicate a correctable
error. The DEQUl return should be used in conjunction with
a clock wake-up call to allow automatic retry of the operation
(Page 29, lines 40-44). See Section 4.7.2.4 for information
on DEQU1l and Section 4.7.3 for information on the timed
wake-up.

6. If a fatal error occurs, the event variable should be set to
indicate this error.

7. If the operation was successfully completed, use the normal
exit procedure described in Section 4.7.2.4 (Page 29, lines
46-58).

4.7.2.4 Exit Techniques - When a task has finished execution, it can
exit by issuing the SEXIT macro (exit and change state of task to "s").

«MACRO SEXIT s
I0oT
.BYTE O, s

« ENDM

The SEXIT macro allows a task to change status to state "s" after
exiting. A task state of "0" indicates the task is runnable, a state
of "2" indicates a wait state, and a state of "4n indicates a stop
state with removal of the ATL node. Task states must always be an
even number since they are used to compute a word index in the PDP-11.
A SEXIT in state "0" causes the system to rescan the ATL list for the
highest priority task.

There are actually three modes in which a task may exit. In the first
mode, is used on completion of a request. Before a task exits, it
must:

1. Zero the busy/idle switch.

2. Set the caller's Event Variable to indicate the nature of
task completion and send an optional interrupt to the XVM
or the PDP-11.

4-63

Task Development

3. Dequeue a request from its deque and process it if found;
otherwise exit.

Before a task can begin the three previously mentioned steps, it must
be executing at level 7 (the highest priority level in the PDP-11).
As an example, assuming a task name is "XR" (the first executable
instruction of every task has the task name as its label), then the

following program code would accomplish the three necessary steps:

BIS #340, @#PS;INHIBIT INTERRUPTS
MOV #72,R1 ;SET CALLER'S EV TO ? (APPROPRIATE VALUE)
CALL SEND15 ; AND SEND CALLER

AN OPTIONAL INTERRUPT

~

TELLING THE REQUESTOR THAT THE

~

REQUEST HAS BEEN PROCESSED

~e

(A COMPLETE LIST OF EVENT)

~e

; VARIABLE SETTINGS MAY BE
; FOUND IN SECTION 3.2.5.4

BIS #340, Q#PS;INHIBIT INTERRUPTS,

CLR XR-2 ;CLEAR THE BUSY/IDLE SWITCH ("XR'" is the tag
associated with the first executable
instruction in the task program code)

CLR XR-4

MOV #XR,R3 sDEQUEUE ANOTHER REQUEST IF ANY

MOV #XR,LH,R1

JMP DEQU ; EXISTS IN THIS TASK'S DEQUE

IF A REQUEST EXISTS, NO RETURN

~e

IS MADE FROM ROUTINE DEQUE
AND THE REQUEST IS AUTOMATICALLY

~e

~e

REMOVED AND PROCESSED AS IF IT

~e

WERE JUST RECEIVED WHEN THE

~e

TASK WAS IDLE

~e

This first method is used in the task interrupt section upon successful

completion of a request.

Task Development

The second method is one where the task exits from the initialization
section (Figure 4-3, Page 29, lines 46-58) in a wait state using the
SEXIT macro, and an interrupt routine or other task will complete the
previously mentioned three steps at a later time. A device driver is
typically exited in this way (Figure 4-3, Page 29, line 57). The
initial section of the device driver is used to set up the device con-
troller and begin the I/O operation. The task will then exit in a
wait state until the I/O is complete, the interrupt section is called,
the device is shut down, and the previously mentioned three steps are

done informing the requestor that the I/0O operation has been completed.

The third method of exiting is one used either when a recoverable error
isrdetected in the interrupt section of a driver and the intention is
to exit and wait for an error recovery or when another I/0 request is
issued in the interrupt section and another interrupt is expected.

This exit through DEQUl does not cause the dequeuing of pending re-
quests but simply places the task in a WAIT state. This method assumes
that an R.SAVE has been performed upon entry to the interrupt process

routine. The required code to use this exit is:
JMP DEQU1

No registers are preserved by this exit. Control is returned to the
interrupt section upon occurrence of an interrupt or via the clock
routine wake-up, to a location chosen by the clock set up section.
(Figure 4-3, Page 29, line 44).

4.7.3 Timed Wakeup

In the design of a device driver it is useful to include features that

eliminate operator intervention whenever possible.

For instance, in the example of the PIREX Line Printer Task, an OFF
Line condition is handled by retrying the printing every two seconds
until successful. This is accomplished by using the wakeup feature
of the Clock Task. This is done by simply placing the return address
and the time dealy into the Clock Table "CLTABL" (See Section 3.3.4)
Figure 4-3, Page 29, lines 42-43) and the exits using the DEQU1 type

exit.

Task Development

When the wakeup call occurs, the clock wakeup subsection specified by

the return address will be invoked. 1In this subsection:

1. Test the task IDLE/BUSY switch to see if the task has been
shut down. If shut down, a RTS PC return to the Clock Task
is in order. (Page 29, lines 65, 70-71, 83.)

2. Determine if the error has been corrected. If not, reset
the timer and RTS PC to the Clock Task. (Page 29, lines
72, 73, 82, 83.)

3. If the error has been corrected, reprocess the original TCB
request and return to the Clock Task. (Page 29, lines 74-81.)
This will cause PIREX to retry the TCB.

4.7.4 Assembly and Testing

4.7.4.1 Assembly and Loading - New PIREX device driver should be
assembled as a part of the PIREX monitor. Background tasks may be
assembled separately.

In the background task case, the user should construct an XVM program
to load the background task binary into XVM memory. (See SPOL15 for

an example of the required technigque.) The XVM program must then issue
a CONNECT Directive. To start the task, if the task is to execute in
PDP-11 local memory, two additional steps are required:

1. 1Issue a local memory size directive to determine if there
is enough local memory to accommodate the new task.

2. 1Issue a CONNECT directive (assuming there was enough room
in local memory for the task).

3. After issuing the CONNECT directive, use the initial portion
of the PDP-11 code to move the remainder of the task into
the local memory starting at the first free location.

4.7.4.2 Testing - Since the typical UNICHANNEL system does not have

a terminal device attached to the PDP-11 processor, the only debugging
facility present is the console indicators on the PDP-11. An addi-
tional aid is the UDMPll paper tape provided with all UC1l5 XVM/DOS
systems. This program provides a destructive dumping facility that
recovers the entire state of the PDP-11 LOCAL memory and dumps it into
the LP11/L.S11/1LV11 Printer.

Task Development

NOTE

The UDMPll program is an unsupported package
that can only be used on systems with a printer
device on the PDP-11 UNICHANNEL Processor.

For tasks executing in the common memory, the
traditional ! Q-DUMP feature of the XVM/DOS
monitor should be used.

CHAPTER 5
SPOOLER DESIGN AND THEORY OF OPERATION

5.1 INTRODUCTION

This chapter discusses the design concepts of the XVM UNICHANNEL SPO-
OLER software and its theory of operation. This information is pro-
vided to enable the user to understand the SPOOLER software in order
to add new SPOOLED tasks or to modify existing software. The actual
modification process is described in Chapter 6. Flowcharts are pro-

vided whenever it is necessary.
5.2 OVERVIEW
5.2.1 SPOOLER

The word 'spool' and 'spooling' originated in the textile industry.
During thread manufacture, the threads are wound on small spools by
first storing them on large spindles and then transferring them onto
small spools. This entire process is called spooling. In the com-
puting industry, the term spooling is used to describe the process of
collecting and storing data on a large high-speed medium and control-
ling the flow of this data to slow speed devices. The "SPOOLER" is a
distinct piece of software that controls the entire spooling operations.
Spooling permits data flow between a data source and a data sink to
proceed at independent rates. This feature gives the user greater
computing power and faster turn-around time because of better system

resource utilization under an integrated operating system.
5.2.2 XVM UNICHANNEL Spooler

In the XVM UNICHANNEL system, spooling is achieved by using the dual
processing capability of the system. The two processors, XVM and
PDP-11, operate in the Master and Slave mode respectively. The Slave
processor (PDP-11) controls the entire spooling operation. Data to
be spooled is supplied by either the master processor (XVM), or by

tasks running under PIREX. Spooled data is stored on a disk cartridge.

[O9]
|
—

Spooler Design and Theory of Operation

The Line Printer, Card Reader, and the Incremental Plotter, all being
UNIBUS devices, are supported by the XVM UNICHANNEL spooler.

5.3 SPOOLER DESIGN

The XVM UNICHANNEL SPOOLER is based on a simple design. Spooling of
data is done through the RKO5 disk. A contiguous portion of disk is
allocated via SPLGEN for this purpose by the operating system on the
XVM. The starting block number and the size in terms of number of
blocks is conveyed to the SPOOLER when it is issued the 'BEGIN' dir-
ective. The SPOOLER allocates and deallocates this space on the disk
through a BITMAP it maintains. The spooling and despooling operations
of every task are performed through a central "TABLE", in which every
spooled task has a slot. Against each slot there are several entries
used to keep track of the data during spooling and despooling. Pro-
visions are made in the SPOOLER to permit spooling of data regardless
of the number of blocks occupied in the spool space and the number

of buffers in the SPOOLER provided despooling operations are going on.
This prevents system lockout. All the data blocks on the disk belong-
ing to a spooled task are linked together by forward pointers stored
in the last word (3778) of each data block. The end of data in a
block is indicated by a zero word. Records are assumed to be less
than 3748 words in size. The last block in a spooled file has a pointer
to the previous file's last block in word '18' or a -1 if there is no
active previous file, if the last spooled file has not yet been de-
spooled. Also the last block in a spooled file contains an end of file
indicator in word '3768' of the data block. Sections 5.3 and 5.4 des-
cribe the static layout of the spooler. The dynamic layout is des-

cribed in Section 5.5.
5.4 SPOOLER COMPONENTS
The following are the major components of the SPOOLER software:

1. request dispatcher

2. directive processing routine
3. task call service routine

4, device interrupt dispatcher

5. device interrupt service routine

Spooler Design and Theory of Operation

6. utility routines

7. buffers, TABLE, BITMAP, TCBs
A brief description of each of the above components follows.
5.4.1 Request Dispatcher

This routine dispatches (routes) all requests made by the SPOOLER and
requests to the spooled tasks. This is done by using the TCN in word
'1' of the TCB. The dispatcher transfers control to the appropriate
directive processing routines, in the case of spooler requests and

to the task call service routine, in the case of requests to spooled

tasks.
5.4.2 Directive Processing Routines

These routines process directives issued to the SPOOLER to control
spooling operations. The basic operations are "BEGIN" spooling and
"END" spooling. These routines may initialize switches, TABLE, BIT-
MAP, pointers, buffers, set up TCB, start tasks, stop tasks, ... etc.

5.4.3 Task Call Service Routines

A task call service routine processes requests addressed to tasks
running under PIREX. It spools data onto disk in case of output tasks,
and for input tasks it despools the data from disk. Output tasks buf-
fer data from several requests into blocks and transfer the blocks to
disk when full. Input tasks read into core, data blocks stored on
disk, and unpack the data into the requestor's buffer. Task Call
Service Routines update the TABLE, pointers, and switches, and use the
utility routines present in the SPOOLER to write or read a block onto
or from the disk, get or give a buffer, get or give a TCB, etc. (Refer
to Figure 5-2.)

5.4.4 Device Interrupt Dispatcher

All interrupts from devices interacting with the SPOOLFER are dispatched
by this routine to the appropriate service routines. This is done by
using the TCN of the requestor for that task request present in word
'138' of the TCB.

Spooler Design and Theory of Operation

5.4.5 Device Interrupt Service Routines

These routines handle completion of I/0 requests from devices. They
supplement the driver routines present in PIREX as in the device hand -
lers. Besides the disk interrupt service routine, each spooled task
has its own interrupt service routine. The disk interrupt service
routine is made up of the "read interrupt processor" and the "write
interrupt processor". These are in turn made up of routines handling
read/write operation for each specific spooled task. The interrupt
service routine of a spooled task controls the despooling operation
for output tasks and the spooling operation for input tasks. These
operations are driven by the table entries which determine the end of
the operation. Device interrupt service routines update the TABLE,
pointers, switches and use the utility routines to write or read a
block onto or from the disk, get or give a buffer, get or give a

TCB, etc.

5.4.6 Utility Routines

Each SPOL1l utility routine performs a specific function. They are:

FINDBK Find a free block on diskland set its bit in the
BITMAP Table (protected).

FREEBK Free the block indicated and reset its bit in the
BITMAP Table.

GETBUF Get an unused buffer from the buffer pool
(protected) .l

GIVBUF Give the used buffer back to the buffer pool.

GETRKT Get a disk TCB from the Disk TCB pool.

GIVRKT Give back the TCB to the Disk TCB pool.

GETBLK Read a block from disk.

PUTBLK Put a block on disk.

GETPUT Get or put a block on disk.

RESTRQ Reissue a delayed request.

DEQREQ Tell requestor that a request is done and dequeue

the next request, if any.

1 . .
Protected routines are those run at priority level 7.

Spooler Design and Theory of Operation

5.4.7 Buffers, TABLE, BITMAP, TCBs

Buffers The SPOOLER maintains a pool of buffers in a
doubly linked list for general use. Buffers
are used to pack data into blocks to be
written onto disk (by output task call ser-
vice routines) and to unpack data from data
blocks read from disk into requestor buffers
(by input task call service routines).

TABLE The entire spooling and despooling operation
of all tasks is controlled by entries in this
table. Every spooled task has the following
entries:

WORD O: DEV device mnemonic (set by the BEGIN
routine)

WORD 1: CBN current despooling block number
(set by the despooler).

WORD 2: CRP current record pointer (set by the
despooler).

WORD 3: NBN next despooling block number (set
by the despooler).

WORD 4: LSB last spooled block number (set by
the spooler).

WORD 5: LFB last spooled file block number (set
by the spooler).

BITMAP A record of availability of disk spooling space
is maintained in the BITMAP. Corresponding to
each disk block reserved for spoecling is a bit
which is 'ON' if the block is in use and 'OFF'
if free.

TCBs Buffered blocks of data are read from disk and
written onto disk using TCBs. Output spoocled
tasks despool data to devices using TCBs and
input spooled task spool data from devices using
TCBs.

5.5 THEORY OF OPERATION

This section will describe in detail the flow of control in the SPOOLER
among the above components. To illustrate this process, the spooling
and despooling operations of the Line Printer will be discussed. The
routines in the SPOOLER listing (Figure 5-1) are broken up into logic

boxes and referenced by line numbers.

Spooler Design and Theory of Operation

5.5.1 SPOOLER Startup

Spooling under an operating system on the XVM is accomplished as
follows. The SPOOLER task should be added to PIREX, by reading it
into local memory and connecting it at run time via SPOOL (SPOL15).

As supplied by DEC, the SPOOLER is a separate binary program from
PIREX. A special XVM program referred to as the system/SPOOLER inter-
face (SPOL1l5) is responsible for loading the SPOOLER into PDP-11 local
memory and then issuing requests to PIREX to connect the SPOOLER and

then begin its operation.

SPOL15 (SPOOL) determines if the spooler is running. If so, SPOL1S
asks "END?". If the reply is yes, a terminate spooling directive is
sent to PIREX and the SPOOLER is disabled. If the SPOOLER is not run-
ning, SPOL15 asks on which RK drive the user wishes to begin spooling.
Spooling may be done on any RK unit that has a cartridge that has been
initialized with a SPOOLER area by the SPLGEN program. If the cartridge
has a SPOOLER area and if there is room in the PDP-11 local memory,

the SPOOLER is read from the system disk (DP0O, DK, or RKO) and trans-
ferred to local PDP-11 memory and started. Note that the questions

"RK UNITH" and "BEGIN?" must be answered in this process.

All questions have default replies displayed. These replies may be
selected by entering a carriage return. The options on YES/NO questions
are "Y" or "N". The default valve for the RK unit is the unit upon

which spooling was done previously (or unit 0 if PIREX was just loaded).

Example: XVM/DOS Vnxnnn
$SPOOL

SPOOL XVM Vnxnnn
RK UNTT # [1] 1
BEGIN? (Y) Y
SPOOLING ENABLED

XVM/DOS Vnxnnn
$SPOOL

SPOOL XVM Vnxnnn

END? (v) Y
SPOOLING DISABLED

XVM/DOS Vnxnnn
$
Subsequently when PIREX schedules the SPOOLER task to run, the "BEGIN"

request is processed. On gaining control, the 'request dispatcher'

Spooler Design and Theory of Operation

transfers control to the 'BEGIN' routine. The first time the SPOOLER
processes a directive it also executes a once only section of code,
which builds a central address table. This table contains addresses

of frequently addressed locations in the SPOOLER and is necessary since
the SPOOLER is coded in Position Independent Code (PIC) and thus can

be loaded anywhere in the PDP-11 memory. SPOOLER is coded in PIC to
permit additional tasks to be added to PIREX without necessitating
SPOOLER changes. The BEGIN routine performs the following; general
startup operations and the specific line printer startup operations

(refer to Figure 5-1):

GENERAL OPERATIONS - BEGIN DIRECTIVE:

Set up the SOFTWARE page 7, lines 9-12
INTERRUPT trap address in
the PIREX SEND11l table

Save the SPOOLER start address line 13

in the "disconnect SPOOLER"

TCB

Initialize the FINDBK routine lines 15-18, 40

switches and pointers.

SPOL11,141 MACL1Y XVM ViAGDD PAGE 3
ASSEMBLY PARAMETERS

1 +SBTTL ASSEMBLY PARAMETERS
2 !

3) CANDITIONAL ASSEMBLY, SLPs $CD, SPL, FOR LINEPRINTER
4 ? FOR LP USE 40000

-1) FOR PL USE i@op@e

6) POR CD USE 20p00

7 240000 sLPz40PQ0

8 18PLe1OARD

¢)

i0 [] CARD READER, AND XY PLOTTER, RESPECTIVELY
11 ARARAm NEVSPPED

12 nodaam NEVCNTEQ

13 JIFDF SLP

14 P0Anme DEVCNTSDEVCNT+L

18 A42anm NEVSPPEDEVSPP|SLP

16 LENDC

17 LIFDE SCD

18 NEVENT2DEVONT L

19 PEvVSPPEDEVSPPISCD

20 JENnDE

24 JIEDF SPL

22 NEVCNTEDEVONT# Y

23 NEvSPPRDEVSPPSPL

24 LENDE

28]

26 '

27 Y

28]

29 . «SBTTL SYMBOLIC EQUATES

Figure 5-1
UNICHANNEL Spooler Components

SPOL11,144
SPOOLER DISPATCHER

OO@NRDRD N -

in

18

19

20
21
22
23

24
23
26
27

28
29
30

31
32
33

23000
noepe?2
napoR4
ae@idn
seni42
2pRi44
ApR146

o252

peibe

oB166

ep1i72
20174

po2e2
ep2p2
#0204

pa2in
re21n
en212

or216

20222
pe224
eA22¢
20230

00234
p0236
20249
pez242

90246
ae25p
20250

pe2ss
PR260p
oe262

Spooler Design and Theory of Operation

MAfR1Y

XVM V1AQQ0® PAGE 6

NOTE

The A assembly errors contained
in this figure are warning
messages, and, do not indicate
actual errors in this example.

.SBTTL SPODLER DISPATCHER

AARoanm SPREGSE,

aa576%
2AA1 46

PPOqL 4
afdoan
fngaon
nL67am
177772
012767
1adapn
177762

AL3767
[\ RY-.1.]
20174nm
an576y
aa5n4n
ARiA2E&
pL12737
naannn
[LRLLY]

n1R70y
n8270y
1775874

N7
282702
04748
nI270an
20003
LI XR-2]
28539y
fALIYR
A16702
on4762
0680122
nBd112
a142a2
n20267
0A47 50
anL37o

122760
ana207
Anang2
nAL143>
niA7ay
n627n;my
neg124

RUMS

SPeT:

1Pt

15918

o0el

L WORD SPEND»SPBEG/2 1SIZE OF SPOOLER (BR=127)

JWORD SPST JSTARTING BYTE OFFSET (BRw=128)
LBLOCK B8, +EAESTK#6=2 J (BR=128)

LHORD DUM

LHORD @

JHORD @

MOV $P8Tw=2,R0 JGET TCP ADDRESS IN R®

MOV #100AP0,3PST=4 JFAKE 11'S REG, TO PREVENT GETTING KILLED

JTHIS IS TO PREVENT STACK BLUW UP THRD!
JCTL 'C'S FROM PDPmib

Mav #HCTLCT,SDCTSY JSAVE CURRENT CTL !C!' COUNT WOR LATER CLEANUP
TST ONCEFL I1HAS THIS COODE ALREADY BEEN UONE?
BNE 208 JYES == DOUN'T DO IT AGAIN

MoV HDEVSPP,88DEVSPL 1SET UP DEVICE SPOOLED WORD
ADR SPBEG,R1 JINITALIZE ADDRESSES (PIC COUE)

MOV PC,RE

ADD HSPBEG=,,R{

ADR ADRTBL ,R2

MOV PC,R2

ADD HADRTBL~, R2

MOV #=ADTCNT,R3

ADD Ri,(R2)+ JCALCULATE ADDRESSES

DEC R3

BNE 198 FLOOP UNTIL ALL FINISHED

MOV BUFLAD,R2 FJSET UP BUFFERS

ADD R1,(R2)+ 1SEY UP POINTERS GOING BACKWARDS THRU @
ADD Ri,eR2

MOV »(R2),R2

CMP R2,BUFLAD FHEAD OF BUFFER?

BNE 158 INDO == TRY AGAIN

cCMPB WSPCOD+20@, TCODE(RD) JSPOOLER REQUEST?

BEQ 1%

MoV PC,R1

ADD HDISP1le,,RY f GET DEVICE DISPATCH TABLE IN RI

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

SPOL11,141
SPOOLER DISPATCHER
34 pe266 nnSens

33
36

37
38
39
42

41
42
43
a4

4as
1]
47
48
49
5

51
52
53

54
5%
56

57
58

59
6o
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

20279

#0276

003ep
on3v2

[.LERY]

er312
20314

20322

0324
P0324

00330
oP334

pR34p
0034n

P0344
20348

2@352
eeass

pa362
oR364
Pa36s

pes37o
oe372
00374
20378
pa40e
pe4e2
P04

ne408
24l
20412

122760
LLLLLY]
2900p>
an1434

pnS5720
12276n
Andnas
andans
fANL424

aasr29
122760
LLEL L]
[.LLJT 1]
anlaty

A137a4
AR L1]
P62704
anAnseK
1127141
aoanzy

204767
r00864

n1070y
782704
podn22
116009
LLELET
n427a9
177740
260109
61204
LIS N

200024
177734
BN2434
177734
177734
177734
177734

An372s
AR448n
AN443n

Spooler Design and Theory of Operation

MAC11 XVM V1AGQQ

!

CLR

CMPB

BEG
TST
CMPB
BEG
TST
CMPB

BEQ@

PAGE 6+
R2
#L.PCOD,TCODE(R®) JLP REQUEST?

228

(R2)+

#CDCOD, TCODE (RA) INO, CD REQUEST?

2%

(R2)+

#PLCOD,TCODE(RY) INO, PL REQUEST?

2%

'
JUNRECOGNISED TASK REGUEST REPORT,

4
ERROR?

71et

22812

’

DIspPat

!
1DFEVICE
NISPy2

MOV PHDEVST,RY

ADD H#SPLOD#*3w244,R1

MOVB #10PS77,(RY)

CALL DEQRED

JSR PC,DEQREQ

MoV PC,R1 JSPOOLER REGUEST JGET SPOOLEK DISPTACH

ADD #DISP@=,,R1 FTABLE IN #3

MOVB FCODE (R®),R2 IGET FUN, CUDE

BIC #177740,R2

ADD Ri,R2 JADD FUN, CODE T0 R}

ADD (R2),R\ JBUILD DISPATCH JUMP X

JMP (R1) JBRANCH TO APPROPRIATE ROUTINE
)SPONLER DIRECTIVE DISPATCH TABLE

BEGIN wDISP® JBEGIN! CODE=@

ERROR =DISP@ JERROR® CODE=2

END =0ISPQ JEND3 CODE=d

ERROR =DISPQ JERROR! CODExS

ERROR =DISPQ JERRORY CODE=1D

ERROR =DISP® JERROR? CODEsi2

ERROR =DISP® JERROR? CODEm$d4

REQUEST =DISPATCH TABLE

LPCALL ~=DISPt JLP: LINE PRINTER

COCALL =DISP1 1CD: CARD READER

PLCALL =DISPY JPLS XY PLOTTER

Figure 5-1 (Cont.)

UNICHANNEL Spooler Components

SPOL11,141
BEGIN DIRECTIVF

WNAB AN -

9 npRdtse

10
11
12
13
14
15
16
17
18
i9
28
21
22
23
24
25
26

Q7
28

30
31

32
33
34
35

pR4LE
20422
00426

00432

PR44p

pe44s
90452
Be45s
pR462
00464
[L.X Y4
pe47g
pe4r2
eea72
R4z 4

pedSep
pe502

peses

eesyp
ne514

aes2e
oRs522

20524
P0524

n12704
p8270¢
pR2348
013702
LLIYT-L
aL0182
[L1 E¥
216087
BAAMY 4
an6274

n12767
ANANMY
[LRWRY]
f167ay
an4549
010167
281432
p1R2167
091430

219794
n827a1
177458

912148

f12641

A167 04
a04460
nt1d702
ns27ae
pA6myo
812703
Q0dnns
010221
B627a2
a0 3ae
aa33ny
NALINT N

B16man

SPOL14,141
BEGIN DIRECTIVE

36
37
38
39

49

41

42
43

ne53p
e0532
20534
pes53s

p0542

00554
P0556

LELLEY]
P06218
[L.LERN]
a2621m
n42718
[LLL1E]
16767
AN4420
01334
P167a¢
004412
n828as
nig187
pAS460

Spooler Design and Theory of Operation

MACL1 XVM ViAQQQ
,SBTTL

PAGE 7

BEGIN DIRECTIVE

’
JTHIS ROUTINE STARTS ALL SPOULING OPERATIONS, SWITCHES, CONTROL REGISTERS

JETC,

ARE SET , THE BUFFER PUOL,

YCB POINTERS, BITMAP, TABLE ETC, ARE

1SFT UPJIRITMAP & TABLE ARE SAVED ON DISK(FOR BACKUP OPERATIONS), EACH
FIMDTYVIDUAL SPOOLED TASK 1S THEN INITIALIZED 2 STARTED UP IF NECESSARY

MoV
ADD

!
BEGINE

MOV
MOV

MOV

PC,R1
DEVINT=-,,R1

PHSENDLL,R2

R1,S5PCOD»2(R2)

JGET ADDRESS OF DEVINT IN RI

JSET SEND1i ADDRESS IN PIREX

14(R@), TCHDSA+TCHEDIS

) YNYTIALIZE ALL SWITCHES
M

av #1,CBTPTR

MOV ASPLFU,RY

MOV R1,TCDINI

mav R1,TCOPNT
)SFT CONTROL REGS,

MOV PC,RY

ADD #DUM=~, ,R1

PUSH Ri

MOV R1,=(8P)

POP =(R1)

MoV (SP)+,~(R})

1SFTIP BUFFER POOL
PINITIALIZE RK TCB POINTERS

MOV

Mav
ADD

MOV

MoV
ADD

281

DEC
BNE

RKCAD,R1

PC,R2
#TCHSYe,,R2

#TCBECT,RY

R2, (R1)+
#30,R2

R3
23

JINITIALIZE BITMAP

PUSH
MOV

MAPRY

ASR
ASR
ASR
BIC

MOV

MoV

ADD
MOV

XVM Viagoe

NBK (RE)
NBK (R@), = (SP)

PAGE 7+

(8P)
(SP)
(SP)
#1,(8P)

BTMPAD,CWDPTR

BTMPAD,Rt

(SP)*,R{
Ri,BTMPED

iSTARY BIT MAP SEARCH

1an1394RSETUP TASK CODE STACK FOR FINDBK
IM4LIONMWNEN MORE THAN ONE GUY FINDS OUT

$HH139#RTHERE ARE NO BLOCKS

}GET ADO, OF DUM IN R1

FSAVE ON STACK

} SET SPOOLER CONTROL REG, !

JGET RKTCBP ADD, IN K1

JGET TCBROY ADD, IN R2

JSETUP YCBCT TCB!'S

1SET TCBRK! POQINTER
JBUMP R2 TD TCBRKZ2

JGET 8IZE OF SPOOLER AREA NUMBER

JCOMPUTE SIZE OF BIT MAP
1SIZE=NUMBK/B+2

IGET EVEN NUMBER
JRESET CWDPTR

P (BRO112, TEMP FIX)

JADD OFFSET TO END
JSET UP BTMPED

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5=

10

SPOL11,141
BEGIN DIRECTIVE

44
45
a8

a7

48

49
5e
51
52
53
54
85
56

57
58

39
6o
61
62

63
64
68

67

oe562
005366
20572
ees57s

[.].1.1-F]

00812
20616
20622
P0824
r062s
PP63p
pR632

pR63s
pebap

Pe64y
Pn650
20652
20654

pe66p

2R66E

20674
2070a

A167m4
#0440>
216324
LI LT
2168m2¢
A00m12
216037y
LTI RN}
ania7n
nt6ngy
[.LILEY
(LR E.1.1.]
[LLM 3
PR1%44
212702
a0a368s
P1210N
225m2x
LLLEYY)
1378

P167my
PB4334
21010%
ni2709
290044
81272y
177777
205302
201374
n12714
14204
nL1R76¢
[11X}
[LI'L W]
n12786y
14246
neea3a

aaSo3y
pdiman
252737
170%00
oninds

94 08708 105087

aN2843

Spooler D

esign and Theory of Operation

MACS1 XVM Viagoa

MOV
MOV
MOV

MoV
MOV

SWAB
MOV

MOV
483 CLR
DEC
BNE
JINIYIALIZE TABL
MOV

MOV
Mov

X8 MOV

DEC
BNE
MOV

Mov
MOV

1SFT SPOOLER SWI
183 CLR

BIS

!
YALL SPOOLED TAS
7% RFSETTYING SWI
1TASK FTC, HAVE
!

«IFDF $C

B1S
PINITIALTZE CD 8

CLRB

MOV

MOV

ADD

CALL

MOV

MOVB

CLRB

CLRB

MoV

CMP

MOV

ADD

MoV

CALL

LENDC

+IFDF S$L
JINITIALIZE LP §

CLRB

PAGE 7+

STBKNA,RY JGET ADDRESS OF STBKNMwd IS Ry
SBN(RR), (R1)* 18ET STARTING LOCK #
NBK (RD), (R1)+ JSET NUMBER OF BLOCKS

UNIT(RQ),#NSPUNIT JTELL PIREX SPOOLING UNIT (BRe126)
UNIT(RG),UNITSP JCOPY INTO LOCAL MEM, (BR=126)

UNITSP 1SET UP FOR TCB USE (BR=1286)
¥BTMPSZ,)R2 JGET BIT MAP SIZE IN R2

R1,R3

(R3)+

R2

43

E

TABLAD,RY 1GET ADDRESS DF TABLE IN R{,R3,R1

R1,R3
H#TABLSZ,R2 JGET TABLE SIZE IN R2

#=1,(R3)+

R2

33

#LP1, (R1) ISET LP1(DED) IN TABLE

#CD1,COTEOF(R1) JSET CD1 (DED) IN TABLE
¥LT1,PLTECF(RY) JSET PL1 (DED) IN TABLE

TCHES
S#SPULSW JRESET SPOOLER SWITCHES

WBEGSW,P#SPOLSW 7SET SPOOLER ENABLED AND RUNNING

K5 HAVE TO BE INITIALISED, UPERATIONS LIKE SETTING
TCHES, SETTING UP POINTERS, BUFFERS, STARTING UP
TO BE DONE AS INDICATED FUR EACH TASK

)
#2, PHSPOLSH 1SET CD ON ONLY IF PRESENT
POOLER/DESPOULER TASK

COONCE

#1000, CDONCE+1

#WLISTHO,R2 FGET ADDRESS OF LISTHU IN R2
#CDCODw4,R2 JCLEAR CD DEQUE TASK CODEsS
EMPTD

®R1,NBN+TABLE+CDTEOF

41,CDCNTI JINITIALIZE CDCNTI

COBMS IRESET CDBMS

COBFS

R1,CDCBIP

(R1)+, (R1)e

R1,CDWDIP

HCDSIZE,COWDIP JBUMP TO NEXT CARD

R1,R5 JSAVE BUFFER ADDRESS ON DTA
sTupCT ISET UP TCB YO READ A CARD

P

PUOLER/DESPOOLER TASK

LPONCE

Figure 5-1 (Cont.)

UNICHANNEL Spooler Components

5~-11

SPOLI1,14)
BEGIN DIRECTIVE

95 00712

96 p0720
97 ee724

98 0730
ae7da

99
100 8734
gt @74¢

p744
@v746

102
{e3
104 0752
105
106
197
108
109
i1@
1114
112
143
114
115
116
117
118
119
120 8756
2756

121
122
123
124

@762
0762
0762
9762

8766

125 @774

126
127

1800
1ge2
1002
1002
128 1006
1006

129
130

1212
1014
1014
131 1020
1920
132 1022
133

n12767
poRioan
na2a3m
B13702
LI BN BT
n827a0
[L LEEL]

[LLEYZ 34
anAn2R

211167
LLEREE)
n10167
aR33ISA
a22121
#10167
203352
105067
ne3343

anNar ey
PAA24K

013748
177778
052737
202340
177776
21270
pAto2e.
nearyy

nL283y
177778

304787
pARAA28
Q10144

An4787
NA1344

n12841
naa2a7

Spooler Design and Theory of Operation

JGET ADDRESS OF LISTHD IN R2
JCLEAR LP DEQUE: TASK CODEs=4

$§SET NBN=CBN FOR START UP

JGET ADDRESS OF LISYHD IN R2
JCLEAR PL DEQUE: TASK CODEs=6
}18ET PLCBCP

1SET PLWOCP
JRESET PLBMS

MAC11 XVM ViAQA® PAGE 7+
MoV #1800,LPONCE+]
MOV OHLISTHD,R2
ADD MLPCODw4,R2
CALL EMPTD
JSR PC,EMPTD
MOV #R1,NBN#TABLE
Moy R1,LPCBCP
CMP (RL)#, (R1)+
MOV R1,LPWDCP
CLR8 LPBMS
LENDC
«1IFDF SPL

PINITIALIZE PL SPOOLER/DESPOOLER TASK
CLRB PLONCE
MOV #1000,PLONCE*Y
Mov 88 1STHD,R2
ADD #PLCODW4,R2
CALL EMPTD
MOV #R] ,NBN+TABLESPLTEOF
MOV Ry ,PLCBCP
CMP (Ri)#, (R1)+
MOV R1,PLWOCP
CLRB PLBMS
+ENDC

sALL DNNE DEQUE
¢

ALL
J8R

NEXT REQUEST
DEQREG
PC,DEQREQ

'
JEMPTY TASK DEQUE

EMPTRS

JINM
PUSH
MOV

BlS

MoV

JSR
LENA
POP
MOV

CALL
J8R

MoV
CALL
JSR

POP
MOV
RETURN
LSBTTL

OH#PS
O4PS,»(SP)

HLVLT7 ,#XPS

HEMPTY,RY
PC,P(R1)+

*4PS
(SP)+,0KPS

FINDBK
PC,FINDBK

Ri,=(8P)
GETBUF
PC,GETBUF

(R1)
(SP)e, (RY)

END

Figure 5-

FINMIBIT INTERRUPTS

JEMPTY TASKS OEQUE

TENABLE INTERRUPTS

1 (Cont.)

UNICHANNEL Spooler Components

12

SPOL11.141
ND

1
2
3
4
5
(-
7

8
9
10
11
12
13

14

{5
16
17
18

19

2p
21

22

23
24
25
28
27
28
29
3¢
31
32

33

34

pBiv24

201032
on10836
p1o42
Q1046
n1052
21056

ei1e64
21070
81072

01074
eie7s

21104

eitln

2iti4
n1114

21120
21124
21130

252737
a8a34n
177778
213794
aaiase
aa5n67
177 to0
795037
(L R 1.¥]
[LLLIT
oR2a3 4
LEET R Y
Anim4ss
942737
200340
177778
21270%
a0anom
LT
LEERRT Y
ALY
232737
20034
177778
213724
2N1a6m

216102
200n 1o

A4787
ARANS 4

712701
2M103k
a13702
animmo
n11162
LLELER

Spooler Design and Theory of Operation

MACL1 XVM ViAgae

PAGE 9

1THIS ROUTINE SHUTS DOWN ALL SPOOLING DPERATIONS, THE TIMER REQUESY
718 PANCELLED, SOFTWARE INTERRUPTS ARE IGNORED AND THE SPOL1) TASK
1Is NISCONNECTED FROM PIREX

’
FNR! BIS

mMov
CLR
CLR
CLR
CLR
BIC

maov

WAIT
DEC
BNE
BIS

MoV

«IFDF
MoV

CALL
JSR

LENDC
LIFDF
MOV
CALL
JENOC
JIFDF
MOV
CALL
JENDC
MOV

MOV

MOV

#LVL7,84PS

PRCLTABL,RY
SK8T=4
#RDEVSPL
SPCOD«4(R1)
OHSPOLSK
HLVL7,84PS

#20,R5

RY
1%
HLVL7 ,04PS

®HTEVADD,RY

SLP

LPCOOWw2(R1),R2

STPTSK
PC,STPTSK

$CD

COCODw2(RY1),R2

STPTSK
SPL

PLCOLw2(RL),R2

STPTSK
MRTURN,R1
@HSEND1Y,R2

(R1),8PCODwW2(R2)

FPROTECY RNUTINE (BR=138)

INULL SPOOLER TIMER REQUEST
TENABLE STOP ALL 1/0
JCLEAR DEVICED SPOOLED SWITCH

JRESET SPOOLER SwITCH

JUNPROTECT TO ALLOW INTS, TO RUN DOWN (BR=138)

FALLOW 20 INTERRUPTS (CLOCK UR DEVICE) (BR=138)

JWAIT FOR THEM (BRm§38)
1COUNT 22 INTS, (BR-138)
JBRANCH IF NOT 2@ (BR~138)
JINHIBIT INT,

TFIND THE ENTRY ADORESS

JFIND TASK ADDRESS

JSTOP THE TASK

1STOP THE CARD READER TASK
ISTOP THE TASK

?STOP THE PLOTTER TASK

1GET RETURN INST, ADD IN R

1SHUT OFF SEND1}

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Sp
EN
35

36
37
38

39
49

41

OLit.148
0

#1134

01142
ot144

01150

P1154
P115¢
01156
1169

01164
25164

01179
01172
21173

21174
pi17s
21209

21204
e1206
21210

21214
pt24e
2122p
p1e22

e1226

LELLE M
LLLLET
LLLLLYY
[.LBY-I.1]
212704
28000
a127a2
eAim24
p04732

71070s
86270s%
203542

012704
100000
[.LLLLY
nay
non

2a57as
Faiagy
pn3782
177774
1000100
214203
122743
[.LLLT}
eeiana
205n12
LLELYT]
0a5a72
17777m
aeda2ay

Spooler Design and Theory of Operation

MAE1Y XVM ViABDO

28

’
STPYSK?

188
1
’

CMP

BNE
MOV

MoV

JSR
ADR
Mov
ADD

IREG
MOV

107
+BYTE

T8Y
BEQ
TST

BPL
MOV
CMPB

BNE
CLR
CLR
CLR

RETURN

PAGE B8«
FCODE(RO) , ¥4
23
#1,R1
#SENDYIS,R2
PC,0(R2)+
TCBOIS,RS

PC,R3
#TCBDIS=,,R5

nioeeen,r4

1,0

R2
18

=4 (R2) JPDOP=1y

18
=(R2),R3
#SPCOD, #RI

15
#R2

JSEE IF THIS WAS VYEND" OR IUPSUC 20 (BK=138)

IBRANCH IF JOPSUC 20 (BR=138)
JTELL SPOL15 DONE

JSET FA

?SEND REQUEST

J(GAR=141) I8 TASK IN EXISTENCE?
J(GAR=141) BRANCH IF NOT,

REQUEST?

INO == IGNORE
JYES == TEST FOR SPOLLER REGUEST?

=(R2) 18TOP TASK (CLEAR TCB ADR

#=2(R2)

ISTOP DEVICE FROM INTERRUPTING

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

14

Spooler Design and Theory of Operation

SPOL11,14} MAELY XVM V1AQQ® PAGE 11}
UTILITY ROUTINES

1 «SBTTL UTILITY ROUTINES
2 .IFOF SCD
3 '
4 JSFT UP TCB TO READ A CARD FROM CD
8 JCALLING SEQUENCE? MOV BUFAD,RS
6 ' CALL STUPCT
7 ! /
8 STUPETE MOV PC,R JGET ADDRESS OF TCBCD IN R{
] ADD HTCBCD=, ,R1
10 BR STUCOM JENTER COMMON ROUTNINE
11 LENDC
12 .IFDF SLP
13 []
14 JSEY UP TCB TO WRITE A LINE ON LP
15 PCALLING SEQUENCE? MOV BUFAD,RS
16 t CALL STUPLT
17]
18 21320 Nn1@7A¢ STYPLTE MOV PC,R1 IGET ADDRESS OF TCALP IN R{ & RS
19 21322 062704 ADD WTCBLP=,,R1
205367
20 21326 naRaan BR STuUCOM
21 ENDC
22 LIFDF SPL
23 ’
24 $1SET UP TCB TO WRITE A_LINE ON PL
25 JCALLING SEQUENCES MOV BUFAD,R5
26 ' CALL STUPPT
27 '
28 STUPPTt MOV PC,R} IGET ADDRESS OF TCBPL IN Rl & RS
29 ADD #TCBPL=,,RY
30 LENDC
31 91330 A1058¢ STICOME MOV R5,18(R1)
202010
32 21334 01010% MOV R1,R5
33 91336 BnSasy CLR 4(R1) IRESET REV
2302004
34 21342 1REQ 1SEND
P1342 p12704 MOV #100900,R4
100000
#1346 A00np4 10T
21350 ney .BYTE 1,0
2135¢ [.I.1]
35 21352 000207 RETURN
36)
37 PSFT UP DISK TCB TO READ A BLOCK WITH NO INTERRUPTS & RETURN ADDRESS
38 ! CALLING SEQUENCE? ADR BUFF ,R4
39 1 ADR =.CBN,R3
40 ' ADR TCBOKw,R2
44] CALL STUFDT
42 '
43 91354 0182a% STUPNTS MOV R2,R% 7SAVE TCBP IN RS
44 91356 022229 CMP (R2)+, (R2)+ $BUMP TO REV
45 91360 ansSazo CLR (R2)+ FRESET REV

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOLi1,14) MAPLY XVM V1ARAD PAGE {2+
FIND A FREE BLNCK mN DISK
42 01556 n2dyoy CMP R1,R3 PDID WE GET TO BEGINNING WORU
43 9156 10in6s BHI 558 JYES, NO BITS, SET UP FOR 'ERROR!
44 [
45 01562 14102 78 MOV =(R1),R2 JBACK UP TO GET EOPY OF MAP WORD
46 1 « > <> €£>» <> <> <> <> ¢ >« > < > END OF EDIT #135
A7 015684 Q12187 MOV R1,CWDPTR 1SAVE FIND POSITION FOR NEXT TIME CALLED
LLLKEW)
48 01570 naS2qa» INC R2 JSETS FIRST ZERO BIYT IN WORDI!
49 01572 n41100 6%y BIC (rRY),R2 JCLEAR ALL REST,LEAVING BIT ¥OR OUR BLOK
50 01574 a%0214 BIS R2, (R1) JSET BIT IN MAP
51 01576 n1028y MOV R2,CBTPTR JREMEMBER BIT FOR NEXT TIME
LLURT Y]
52 01602 166704 suB BTMPAD,R1 JBYTE INDEX FOR FOUND BLOCK #
(-1 MY 1]
53 016088 195702 75718 R2 118 BIT IN LOW HALF OF WORD
54 16102 aninny BNE 8% PYUP, NO CHANGE
585 p1612 andraq INC R1 JIN HIGH MALF, INC BYTE COUNT
56 01614 pe63aAy 83: ASL Ry JNIBBLE (4 BIT) INDEX FOR FIND
57 01616 232702 BIT #i70360,R2 718 BIT IN HIGH NIBBLE OF BYTE
1703680
58 01622 amlapy BEQ 9% JNO, NOCHANGE
59 51624 Andony INC R1 JYES, SO INCR NIBBLE COUNT
69 p1626 006301 0%} ASL Ry JCRUMB (2 BIT) INDEX FOR FOUND BLOCK
61 0163p n5§709 BIT #146314,R2 } IS BIT IN HIGH CRUMB OF MI®BLE
146314
62 91634 001404 BEQ ius INO, NO CHANGE
6) 21636 na32a¢ INC R1 JYES, SO INCR CRUMB COUNT
64 p164p 9N63ny 1082 ASL Ry INOW HAVE BIT COUNT FOR BLOCK
68 01642 032702 BIT #125252,R2 718 BIT IN HIGH BIT OF CRUMP
1252592
66 01646 01409 BE®Q 118 INO, NO CHANGE
67 0165 0A5209 INC Rt FYES, S0 ADD ONE
68 21652 3867a¢ 11s: ADD STBKNM,R1 JAND FINALLY ADD #OF FIRST MAPPED BLOCK
AN3414
69 [
70] «» €> € > &>« >» <> <> ¢>» <>« > ENDOF EDIT #133
71 s
72 sTHE FOLLOWING PIECE OF CODE CWECKS TO SEE IF THE CURRENT BLOCK TO BE
73 JALLACATED TO THE CURRENT SPODLING TASK EGUALS THE CBN OF THIS
74 JDESPOOLING TASKJIF THIS IS TRUE, THEN THE 'SPOOLER IS DECLARED FLOUDED!
7% yTHIS HAPPENS ONLY ON A WRAP AROUND(ENTIRE SPOOLER AREA IS TREATED AS A
76 JRYNG BUFFER)WHEN SPOOLING OPERATIONS ARE WAY AHEAD OF DESPDULING OPERATIONS
77 H
78]
79 pwawsewNOTES AS NEW TASKS ARE ADDED NEW CODE HAS YO BE ADDEDwwwww
80 prawewnwsiwnr SIMILAR TO THE CUDE FOR EXISTING TASKSwewwrwwwwhwhwwy
81 '
82 01656 116n02 MOVB 2(R@),R2 JGET CURRENT TASK CODE
[LLLELE]
8) 91662 122702 CMPB HLPCOD,R2 J1LP?
LLLLLY
84 P1666 pO141y BEQ 215
85 0167¢ 122700 CMPB #COCOD+200@,R2 IND, CD?
pwvdzen
86 01674 02141 BEQ 228
87 91676 122702 CMPB #PLCUD,R2 iINO, PL?
oaonns
88 p1702 PRinyo BNE 268
89 91704 216700 MOV TABPLC,R2 1YES
AN326m
90 01710 n0B402S BR los
91 01712 216709 o1et MoV TABPCB,R2
LIRYLY)
92 81716 mmQ4np BR s
93]
94 91720 215702 22s1t MOV TABCDC,R2
QR3254
95 p1724 hIE X
96 01724 020119 CMP R1, (R2)
97 01726 aRlayn BE® 5%
98 @173p 26%3
99 24730 pap auPS JDEBUGIUNPROTECT
01730 212837 Moy (SP)+,8HPS
177774

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-16

Spooler Design and Theory of Operation

SPOL1t,141 MACL{ XVM VIADQA® PAGE 12+
FIND A FREE BLOCK AN DISK
ipe FJRETURN WITH BLOCK # ON STACK
101 1734 oooany RETURN
102 4
103 1SAPRRY NO BLOCK FREE?? SETUP TO HALT CURRENT OPERATION
104] « » € > < > <> <> <> <> «¢><>.< > START OF EDIT #135
105 1736 2167ax 55«3 MOV AFNDBK,R3 JADDR 'FINDBK' 7 ENTER WHEN NO BLOCK
fNI28n
106 1742 POP R2 FSTACK NOW /ENTER PS/CALL PrC/
1742 0126802 MOV (SP)+,R2
107 $744 PUSH R3 JMAKE IT /ENTER PS/ADDR FINUBK/CALL PC
1744 2103448 MOV R3,=(SP)
128 1746 PUSH R2 JAND HOPE IT FALLS THRU 5 Ok
1746 310246 MOV R2,=(8P)
199] € > ¢ > <> <> <> <> > > <>« > END OF EDIT #135
110 175p a1160as %82 Moy (SP),R2 JDEBUGJGET OLD PSIBR HWERE 1 BLK LEFT
111 1752 ai68ys MOV 2(SP), (SP) JDEBUGISET UP PC
aedans
112 1756 ni10@o68 MOV R2,2(SP) JDEBUGPSET PS
PP0AQ>
113 1762 PUSH Re
1762 at10048 MOV R@,=(SP)
114 1764 PUSH R{
1764 910148 MOV Ri,=(SP)
118 1766 PUSH R2
1766 Q190246 MOV R2,=(SP)
116 1779 PUSH R3
1770 218348 Mov R3,=(SP)
117 1772 PUSH R4
1772 010448 MoV R4,=(8P)
118 1774 PUSH RS
1774 210%48 MOV RB,»(SP)
119 1776 o13767 MOV #NCTLCT,SDCTSY 7SAVE CURRENT COUNT OF PDPwiy CTL 'C'S
SPOL11,141 MARI1 XVM ViAQO2 PAGE 17

TASK SOFTWARE YNYERRIPT DISPATCHER
1 '
PSFNDL5 IN PIREX TRANSFERS CONTROL TO DEVINT BY A "CALL @SEND1)(=COD®2)"

2
3)IF REQUESTED IN TCB, THIS IS DONE BY A CODE QF '3! IN BYTE=3
4 10F TCB, SPOOLER SETS THE ADDRESS OF DEVINT IN SEND1! WHEN STARTED
3 '
6 '
7 [
8 @P2764 92278 DEVINYI CMP #1,4(RO) JGOOD COMPLETION??
LLLLLY
LLLLEY)
9 902772 ania2s BNE 5% JBRANCH IF NO
10 22774 122760a cMPB HRKCOD+200, TCODE (RQ) JRK REQ,?
aA02m2
LLELLY)
11 03002 0n1417 BEG RKINT
12 03004 (2278m CMPB #LPCOD+2@0, TCODE (R@) JLP REQ?
d00204
naaons
13 03012 o0l406 BEQ® 2%
14 83014 122760 CMPB #CDCOD+200, TCODE (RD) JCD REQ?
2Na20%
andnn2
15 093222 nAldnme BEQ 3%
16 03024 020167 JMP PLINT
L7272
17]
18 1
19 83030 A0V167 2%, JMP LPINT
PRO532
20)
21 03034 020187 38 JMP COINT
aM2014
22 '
23 !
24]
25 03R4p 581
26 n3odnp anazay RETURN
27 !
28 +3BYTL RK INTERRUPT SERVICE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-17

Spooler Design and Theory of Operation

SPOL11,141 MACL{ XVM V1ABG@ PAGE 19
RK INTERRUPT SERVICE

i '
2 pDYSK WRITE REQUEST WAS MADE FQOR A SPOOLED DEVICE
3)
4 203372 01680ny WRITED MOV 12(R0O),R{ JGEY BUFFER ADDRESS IN R1,
aadngo
5 003376 010123 MOV RY,R3
6 203400 205m2 ¢ CLR (R1)+ JRESET HWDS
7 003402 AASnqy CLR (RY$)
8 003484 CALL GIVBUF
003494 004767 JSR PC,GIVBUF
177058
9 233410 122760 (o, 13.] #PLCOD,DTCODE(R®) JREQ MADE FOR PL DEV?T
nagoos
necazes
10 03416 001450 BEG 433
11 23420 122780 CMPB #C0COD,DTCODE (RQ) JREQ MADE FOR CD DEV?
ananns
LILFL]
12 03426 o0iaze BEQ 423
13 +IFNDF SLP
14 4182 MoV OHDEVST,RY
15 MOVB NIOPS77,LPSPER(RY) PREPORY TASK NOT SUPPORTED
16 RETURN
17 +ENDC
18 +IFDF SLP
19 JWRITE REGUEST MADE FOR (P
20 83432 91670y 41at MOV LPBMSA,RY JRESET LPBMSA
en1568
21 03434 ta3ayy CLRB (R1)
22 03438 n167as May TABLAD,RS
ARLS3Im
23 03442 gy8nasx MOV 6(RR),L5B(R5) JSET LSB IN TABLE
LLLLLT]
nadata
24 23450 0t670% MOV LPONAD,R3 SJGET ADD OF LPBMS IN R3
LIAL L]
25 03454 109713 TSTH (R3) JFIRST TIME THROUGH??
26 03456 N01344 BNE DONE
27 0346p 10822% INCB (R3) + JYES, SET 8w,
28 03462 105213 INCB (R3) JSET LPBMD
29 03464 , CALL GETBUF JGET A BUFFER
03464 0ON4YSEY JSR PC,GETBUF
1766874
3¢ 03472 PUSH #LPCOD JSETUP FOR GETPUT SAVE DEV COOE
03472 Q12748 MOV #LPCOD,=(SP)
LLILLY]
31 +ENDC
32 03474 4491 PUSH #READF JSAVE DISK FUN,
03474 012748 MOV #READF , = (SP)
B02904
33 o3f%0p PUSH R1 JSAVE BUFFER ADD
P3%00 210148 MOV Ri,=(SP)
34 03502 PUSH NBN(RS) }SAVE BLOCK #

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

SPOL11,.441
RK INTERRUPT SERVICE

35

36

3

38
39
40

41

64
(1]
66
87
68
89
7a
74
72
73
74

23802 a16848
LLLLLL

gases

23508 pA4r6y
177958

23812

03512 andrey
176874

23518 p627pa
[-LILEY

23522 amaryy

23524 213784
20ia%n
23530 1127689
aeeary
002043
23536 nov2oy

23540 213799
aniasm
03544 11278,
LLI-LY a4
LI L]
03552 po0207

Spooler Design and Theory of Operation

MAL1Y XVM V1AQO3 PAGE 19+

42«1

4283

4393

a3t

MOV NBN(RS5) ,~(SP)
CALL GETRKY 1GET A RK TCB
JSR PC,GETRKT
CALL GETPUTY 1GET BLOCK
JSR PC,GETPUT
ADD #10,8p JCLEAN STACK
BR DONE JCHECK REV & EXIT
JIFNDF $CO
MOV #HDEVST,R1
MOVE #I0PS?77,CDSPER(RY) JREPORT TASK NOT SUPPORTED
RETURN
LENDC
.1FDF $CD
JWRITE REQUEST MADE FOR Cp
Moy CDBMSA, R 1SET COBMD
CLRB (R1)
MOV TABCDT,RS
MOV 6(RO),L8B(R5) JSET LSB IN TABLE
MOV COONAD,R4 JYES, CDONCE=@?
7878 (R4)
BNE DONE
INCB (R4) JSET CDONCE
INCB {(RA) 1SET CDBMS
CALL GETBUF JGET A BUFFER
MOV R1,7(R4) JSET CDOBCP
CALL GETBUF
PUSH #CDCOD JSAVE DEV.CODE FOR GETPUT
BR 443 J1SSUE READ REQUEST
LENDC
L IFNOF SPL
MOV #HDEVST,R1
MOVE #IOPS77,PLSPER(R1) . JREPORT TASK NOT SUPFORTED
RETURN
LENDC
JIFDF SPL
JWRITE REQUEST MADE FOR PL
MOV PLBMSA,R1 JRESET PLBMSA
CLRB (R1)
MOy TABPLA,R5
MOV 6(RO),LSB(R5) JSET LSB IN TABLE
MOV PLONAD,R3 JGET ADD OF PLBMS IN R3
TST8 (R3) JFIRST TIME THROUGH??
BNE DONE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOLIL1,141 MAC11 XVM ViAG@Q PAGE 21
LP INTERRUPT SERVIRE

J

ITHIS ROUTINE HANDLES COMPLETION OF 1/0 SOFTWARE INTERRUPY FROM THE
3DRIVER TASK IN PIREX, IT DESPOOLS THE SPOGLED DATA ONTO THE LP,

!

[« I8 RN

. IFOF SLP

6 Pp3s85a naa |LPnUMIT BYTE [} JUNUSED

7 203555 aaa LPANCEY ,BYTE [} JONCE ONLY Sw

8 Ap3556 Ada LPRMPD: L,BYTE [/ JBLOCK IN MOTION SW

9 003557 nan | PayFS: ,BYTE [} JEMPTY BUFFER COUNT

18 9356 noQ@a@m LPrBYPI @ JCURRENT BUFFER POINTER

11 235362 andoem | PuDTP: P PCURRENT WORD POINTER

12 93564 @AGAQm | PABIP! D FNEXT BUFFER POINTER

13 .ENDC

14 ’

15 H

16 . IFNDF SLP

17 LPYNTE MOV #HDEVST, R}

18 MOVB #10P877,LPSPER(RYL) JREPORT TASK NOT SUPPORTED

19 RETURN

20 +ENDC

21 .IFDF SLP

22]

23 93566 91670¢ LPINTI MOV TABCRT, R\
PAL1434

24 03572 #5273y BIS #LVLD, #8PS JINMIBIT DISK INTERRUPTS
oAa24m
177776

25 03620 @227y CMP #=1,(R1) JANY MORE YO DO?
17777>

26 03604 oalnta BNE 15

27 03606 216723 1182 MoV LPONAD,R3 FJGEY C(LPCBIP) IN R3
[LERLT.

28 ¢3612 1@5a2y CLRB (R3)* JRESET SW,'S

29 23614 105a2y CLRB (R3) + 7BUMP TO LPBUFS

32 03618 1759023 INCB (R3)» JRELEASE BUFF,

31 0362¢ @t1van Mmov (R3),R3

32 93622 CALL GIVBUF JGIVE BACK BUFFER

p3622 andrey J8R PC,GIVBUF

176840

33 03626 n42737 o3 RIC #1,PuSPOLSW FNO, SET LP IDLE SW
[-LLLII]
291048

34 pI6GI4 02207 mOAR: RETURN

35 23636 A0571 181 TST (R1) JYES, BLOCK IN MOTION?

36 0364p nNAlagr BNE 3%

37 03642 016704 158t Mov LPCPAD,R4 }SK=124 YES, GET ADD OF LLPCPADBIP IN R2
an1352

38 93646 a114p% MOV (R4),R3 JRELEASE BUFFER

39 p3sha CALL GIVBUF

2365a amarey JSR PC,BIVBUF

176812

42 03654 105244 INCB =(R4)

41 03656 105764 (Me? TSTB =1 (R4) 1BLDCK READ IN?

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11,14y MACLY XVM V1AGO® PAGE 21+
LP INTERRUPT SERVICE
177777
42 03662 p9i4py BEQ a3
43 93664 CALL WATTBK
R3664 n0drsy JSR PC,WAITBK
175530
44 p3670 @20772 BR 108
48 03672 433
46 B3672 P16870¢ MoV TABCRT,R1 PDEBUG
f21330
47 23676 @16767 MOV TABLE+NBN, TABLE+CBN JSET CBN=NBN
pe236n
pN2352
48 p37p4 @12787 MoV 44, TABLE#CRP JSET CRP
nAadnn 4
anay4n
48 03712 01079y MOV PC,R3 JGETY LPOBIP ADD, IN R3
50 03714 0682703 ADD HLPOBIP=,,R3
177850a
51 03720 nii1304 MOV (R3),R4 JGET C(LPOBIP) IN R3I & BUMP TO TWDY
52 3722 n16487 MOV TWDYL (R4), TABLE$NBN }SET LP,NBN
[L.]
PN2332
53 23730 @167a> MOV LPCPAD,R2 1GET ADD, QF LLPCPADGIP IN R2
201264
84 23734 0113292 MOV (R3), (R2)+ 1SET LPCBIP
38 03738 211312 MOV (R3), (R2) 1SET LPWDIP
568 03740 062742 ADD 44, (R2)
aavana
57 83744 o004y BR 5% 1SEND WRITE REQ IF NOT SHUT DOWN
58 03748 16722 38 MOV LPCWAD,R2 JGET ADD OF LPWDIP IN R2
AR1234
59 a3752 a1724a MOV #(R2),~(SP)
fa02apm
60 93756 nB2718 ADD #5, (SP) JEVEN BYTE COUNT
LLELEL
61 03762 n4271m BIC #177401, (SP)
17740
62 3766 Q61814 ADD (8P), (R1) JBUMP CRP
63 83770 08244 ADD (8P)+, (R2) J1BUMP LPWDIP
64 03772 932737 58y BIT 440002, ##SPOLSW JSHUT DOWN?
P4dnnm
LY Y]
65 pdacn amirys BEQ 23
66 04002 032737 BIY #1,PNSPOLSW JSHUT LP?
200001
[.I.B8- Y1]
687 g4210 0nL70s RERQ 23
68 Q4012 432737 BIT #10000,043P0LSW, JSHUT DESPOOLER
plegdan
anlo4as
69 p402n aaivna BEQ 28
70 04022 295779 TST #(R2) JFIRST RECORD A ,CLOSE?
AAAAAN
7{ B4D26 Q01024 BNE 138
72 @403p n26164 CMP w2(R1),4(R1) JANY MORE DATA?
177778
.L.LLT.F]
73 24036 paioay BNE 148
74 p4Qdp CALL 128 INO, SET TABLE ENTRIES
04024p 004787y JSR PC,128%
AnA24n
785 84044 00086m BR 118 JRESET SWITCHES & EXIT
76 Q4046 216732 144t MOV LPONAD,R2 J1DEBUG)ISK=124 GET LPBUFS ADRKESS
LR EL]
77 24052 @62700 ADD H2,R2 JDEBUG}SK»{24
000202
78 paob6 12271 CMPB #1,(R2) JDEBUGISK=124 ONE FREE BUFFER?
[:LLLT.X]
79 04062 pol26y BNE 158 7SKe124
8¢ Q4264 {25782 TST8 =1 (R2) JOEBUGISK=124 YES, BLOCK IN MOTION?
177777
81 04070 001284 BNE 158 JSKw124

Figure 5~1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11,141 MACS1 XVM V1AQGQQ PAGE 21+
LP INTERRUPT SERVICE
82 04072 CALL 93 }SK=124 NO, GET NEXT BLOCK
04072 0094787 JSR PC,93
2NG148
83 04076 00088, BR 158 JSKw=124 RELEASE BUFFER & WAIT FOR BLOCK TO COME IIN
84 ’
85 [} .
86 R4100 ationx 13e1 MOV OR2,R5 INO, SAVE BUFF ADD ON STACK
87 paiee CALL STUPLT JSET UP TCB TO UNYI A LINE
04102 ar4dvey JSR PC,STUPLT
1752192
88 04106 p167m9 MOV TABCRT,RY
201114
89 p4112 oil2n4 MoV (R2) R4 JCHECK FOR BUFFER EMPTY
90 p4l14 a17248 MOV #(R2),~(SP) JGET BYTE COUNT
LLLLLT
91 04320 062748 ADD #5, (SP) JEVEN BYTE COUNT
LLILLL]
92 04124 04274n BIC #i1774@1,(SP)
177404
93 04130 pa26804 ADD (8P)+,R4 7jBUMP R4 TO POINT TO PT WORD OF NEXT
94 04132 010792 MOV PC,R2 JNO, GET ADD OF LPBUFS IN R2
95 04134 a62702 ADD SLPBUF8», ,R2
177423
96 c4ide 203714 TST (R4) JLAST RECORD?
97 n4142 o914y BEQ (1}
98 p4144 022714 (o, 14 =1, (R4)
177777
99 04150 ontay4 BEQ 6s
100 4152 (22749 cMPB #1,(R2) JLPBUFS=x]
- LLLLT]
103 4158 9ni228 BNE 508
102 4160 105742 TSTB «(R2) JYES, BLOCK IN NEXT?
103 4162 291224 BNE Sas
194 4164 02648y CMP »2(R1),4(RY) INO, MORE TO DOE (CBN=aLSB)
177778
092004
105 4172 anison BEQ 308
106 4174 CALL 93 }8K»124 GET NEXT BLOCK
4174 004787 JSR PC,9S8
LLILYY)
187 4200 00061% BR LT] JSKw124 EXIT
Y1) ']
109 y
110 yBUFFER EMPTY) TEST IF MORE BLOCK TO 007
114 4202 026161 631 cHP =2(R1),4(R1) JMORE TO DO? (CBN2LSB)
177774
notoad
112 4219 o2lays BEQ 78
113 4212 pod01y CLR (RY) JSK=124 SET CRP=Q
114 4214 122719 CMPB #1,(R2) JLPBUFS®17?
29000
115 4229 001004 BNE [}
116 4222 108742 TST8B »(R2) JBLOCK IN TRANSIT?
117 4224 adiaoo BNE 1] 18Kwi24
118 4226 CALL 9% 1SK=424 GET NEXT BLOCK
4226 004787 JSR PC,93
asomy2

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

-~

SPOLIt,.144

Spooler Design and Theory of Operation

MACY
LP INTERRUPT SERVIPE

119 4232 paasy s

120
124
122
123
124
125
128
127
128
129
130
131
132

133
134

135
136

137
138

139
140

14%

142
143
144
148

4236
4236

4242

4244
4244
4246
4246
4250
4250

4254
4258
4286
4289
4260
4262

4266
4270

4274
a27s
4278
4302
4304
4394

4319

4316

177378

204767
000042
092773

012148
010248

pa4reY
176110
010104

12822

212804
e10467
17727«
108212
21270%
CLLLLY]
210102

P04767
000804
andz07

812714
177777
212764
177777
LLILLLL]
280207

XVM ViAQGD20Q

JMP

PAGE 21+

Sos

INn MORE BLDCKS TO DO

7%

4
JBFT NEXT BLOCK

981

12812

CALL
JSR

PUSH
MoV
PUSH
MOV
CALL
JSR

MOV
poP
MOV
POP
MOV
MOV

INCB
MOV

MOV
CALL
JSR

RETURN

MOV

MOV

RETURN

«ENDC
«SBTTL

128
PC,128

R1
R1y=(SP)
R2

R2,= (SP)
GETBUF
PC,GETBUF

Ry,R4
R2
(SP)+,R2
R1
(5P)*,RY
R4,LPOBIP

(R2)
#LPCOD,RY

Ri,R2

GETBLK
PC,GETBLK

Hwi,0RY

Hm1,6(R1)

1SK=125

1SET TABLE ENTRIES

JYES, GET BUFFER & READ NEXT BLOCK

JSAVE BUFAD IN R4

1SET LPOB]P

JSEY LPBMS SW
1GET DEV,CODE IN R3, FOR GETBLK

JGET LP,CRP ADD, IN R2

JGEY BLOCK FROM DISK

18K=124

}SET CRPsw]

1SET LFBs=y

LP CALL SERVICE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11.14} MAR1Y XYM V1AQQA2 PAGE 22
LP CALL SERVICE
1 t
2 JTHIS ROUTINE SERVICES CALLS TO OUTPUT DATA ONTO THE LP, IT SPOOLS THE
3 1DaTA SENT BY THE CALLER ONTU THE DISK,
4 ?
[+ IFDF $LP
6 2pal32p age LPpUMCE ,BYTE] JUNUSED
7 004324 agm _PRMS: .BYTE 4] IBLOCK IN MOTION SW
8 0p4322 @ofaAm LPrBCPS @ JCURRENT BUFFER POINTER
9 004324 000a0m LPwDCP! @ JCURRENT WORD POINTER
10 04326 andeam LPARCPE 0 INEXT BUFF POINTER(DUMMY)
11 LENDC
12]
13 1]
14 +IFNDF SLP
15 LPeAI LS MOV &NDEVST,R1
16 MOVB #477,LPSPER(R1)
17 CALL DEQRER
18 +ENDC
19 .1IFDF SLP
20 0433n #2414¢ LPrALLY CMP =(R1),=(R1) JPOINT R1 TO LPWDCP
21 04332 n327%7 BITY #20000,04SP0LSW JSHUT SPOOLER?
a20nam
nAN1M4R
22 P4340 anialzy BEQ 108
23 04342 PUSH R1 1SAVE Ri, NO
P434p A10148 MoV Ri,=(8P)
24 04344 1110 MoV (R1),R1 JGET CONTENTS OF LPWDCP IN R1,R4
25 4346 10404 MOV Ry,R4
26 p43Bn pi6ony MOV 19 (R2) ,R3 JGET CALLER BUF, ADD, IN R3J
ananym
27 04354 9063ny ASL R3 JRELOCATE aADD,
28 DA358 pEI7Ay ADD ONMEMSIZ,R3
LIl VL]
29 04362 (1130@2 MovB (R3) ,R2 JGET BYTE COUNT FROM BUFFER IN R2
30 p4d64a a82702 ADD H5,R2 JADD HWD BYTE COUNT + EVEN BYTE COUNT
pA000s
31 P4370 042709 BIC H#177401,R2
177494
32 04374 060201 ADD R2,R1 JBUMP LPWDCP BY THE SIZE OF NEXT RECD,
33 24376 niians MOV (SP) RS JGET LPWDCP ADD, IN R4
34 04400 PUSH «(RS) JPOINT TO LPCBCP & SAVE CONT, OF LPCBCP ON 8TACK
044020 n14%4n MoV = (R5), = (8P)
35 nd4ep anBaae ASR R2 JCONVERT TO WORD COUNTY
36 04404 1682804 suB (SP)#+,R1 JCOMPUTE SPACE REM,
37 04408 222734 cMP #770,R1 JSPACE LEFT?
a0Q77m
38 04412 Q2482 BLT 43
39 24414 CALL COPBUF JCOPY CALLER BUFFER
R4414 B04767 JSR PC,COPBUF
nAPISA
40 0442n POP R4 JTEMP SAVE Rl IN R2
0442p 0126804 MOV (SP)+,R4
41 B4422 CALL 6s JCHECK FOR LCLOSE
SPOL11.14¢ MACLY XVM V1iAQO® PAGE 22+
LP CALL SERVICF
24422 004767 JSR PC,638
aag27ao
:g 24428 0004ns 8R 1] INO
'
44 04430 N127680 (el MOV 4=600,4(RO) $SPOOLER SHUT DOWN, REPORT
177200
[L1-LIX]
45 04438 PUSH R1 FOUMMY
04436 B10144 Moy R1,=(8P)
A6 Q444p p0@18Y JMP DEQRQ
1745878
47 JLAST RECORD WAS NDOT A ,CLOSE
48 04444 003744 RS 78T =(R1) JPOINT R1 LPCBCP

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11,141 MACLY XVM VIiAQAPD PAGE 22+
LP CALL SERVICE
49 04446 ni10ip> MOV Ri,R2 JSAVE IN R2
50 04459 p0573¢ ST (R1)» 1BUMP R{ LPWDCP
51 04452 n11104 MOV (R{),RE 7GET CURRENT WORD ADD, IN Rt
32 24454 1681004 suB (R2),R} JGET REMAINNING # OF WORDS
53 24456 n22701 CMP #77@,R\ 1SPACE LEFT?
nRAr7n
54 04482 p03ny4 BGY 25
55 94464 01070y 08 MoV PC,RY 1GET ADD. OF LPWDCP IN R
56 RA4468 082704 ADD HLPWDCP=,,R1
177838
57 04472 noSnryy CLR € (R1) IND, PUT BUFFER ON DISK
ondaan
58 04476 CALL FINDBK }GET DISK BLOCK #
04476 pn4rey JSR PC,FINDBK
174738
59 pa50p PUSH R1 FSAVE BLOCK # ON STACK
PASPD 910¢4R MOV R1,=(SP)
6p p4524 n167nmp MOV LPCBCP,R2 1GET C(LPCBIP) IN R2
177812
64 p451n 011862 mMov (SP), TWDL(R2) JSAVE BLOCK # IN TWDI
LLEY A
62 paS14 n1270x MOV #LPCOD,R3 JGET LP,DEY CODE IN K3
poRon4
83 0452n 016709 MOV LPBMSA,RY JSET LPBMSA
anRazs
64 pad24 145214 INCB (R1)
65 p4a52s CALL PUTBLK J1PUT BUFF, ON DISK
04526 A04767 JSR PC,PUTBLK
A0A37 A
66 04532 p16704 MOV LPCBAD,R4 JGET ADD, OF LLPCBADBCP IN R3&R4
P00446
67 24538 38 CALL GETBUF IGET A NEW BUF
04536 andrsy JSR PC,GETBUF
175822
68 24542 P10194 MOV R1,(R4)+ 7SET LPCBCPSBUFAD
69 @4544 POP (R1) JSET BLOCK # IN HWD® OF NEW MUFF,
P4544 01261 MoV (8P} +, (R1)
7@ @4546 06279, ADD N4,RY JBUMP R2 TO WORD 2 OF BUF
LTV
71 84552 p1d144 MaV R1, (R4} 1SET LPWDCP
72 04554 P81 CALL DEQRED JUEQUE REGUESY & EXIT IN WAIT STATE
24554 Q04787 JSR PC,DEQREQ
174450 1
73 04560 481 POP R1 JRESTORE ADD, OF CURRENT 'WORD IN R}
04560 n12an¢ MOV (SP)+,Rt
74 04562 PUSH R3 JSAVE R3,R2
P4362 a1n34m MOV R3,»(8P)
75 04564 PUSH R2
04364 210248 MOV R2,=(SP)
76 pA568 paSayy CLR #{R1) JSET BUFF, END SW
LLLLT-L]
77 p4572 CALL FINDBK JGET DISK BLOCK #
n4572 pndarey JS8R PC,FINDBK
174842
78 04376 PUSH R1 JSAVE BLOCK #
04576 p1014n MOV Ri,=(SP)
79 g4atep CALL GETBUF 1GET A BUFF,
B460p aR4YEY JSR PC,GETBUF
175560
80 04604 11481 MOV (SP), (R1) JSET BLOCK # IN HWD@ OF NEW BUFF,.
84 D466 N16704 MoV LPCBAD,R4 JGET ADD, OF LLPCBADNCP IN R4
LLLLYEY
82 P46t PUSH (R4)
04612 011448 MOV (R4),=(SP)
83 p4b6is PUSH (R4) JSAVE CONT, OF LPCBCP
P48614 011448 MOV (R4),=(SP)
84 04615 pB27¢4 ADD #TWOL, (SP) 1BUMP YO TWDI
pRAY7A
B5 24622 016438 MOV 4(8P),P(SP)+ ISET LINK IN OLD BUFF,
L LLLLY
86 94826 010124 MOV R1, (R4)+ FSET LPCBCP & BUMP 1D LPwWDCP
87 p463p n62704 ADD #4,RY JPOINT TO WORD 2 IN BUFF,
LILLTP

Figure 5~1 (Cont.)
UNICHANNEL Spooler Components

5-25

SPOL11,141
CALL SERVICE

Le
88

89
90
91
92

23

94
5
96
97
o8
99
100
104
102
103
104
105

106
fe7

{e8
109
110

114
112
113

114
115

116

117
148

119
120
121
122
123

124
128
128
127
128

04634
24634
4638
04640
04642

D464

p4632
04682

p465s
04658
24669
[LLLT.]
24662

04668

24s72
24672
B4674

4700
A702
4702

4706
47086
4719
4710

4714
4716
4720
A722

4730
4732
4734
4734
4736

4742

4748
4746
4780

4754
4756
4756

4762

4770
4772

4774

A776
4778

Seea
Sane
5010
Se12
Se14

01044nm
p121t4
210104
016802
padaas
a16603
LLL LR

an4ayey
290129

212604

212602
ni27o%
[.LLLLY
262708
[.I.LLLL

10448
816704
200322
108521

andyey
2nR222

a12804

pedrey
LLI-LIT)
ennzy7
010404
P11104
p22764
LLLYEW]
177778
LLELTT
012104

218702
262792
20133
316704
0AB238

811248
817112
2902000
811104

21286
290na2
B12769
177777
090774
5728
LLLLRY

290207

22673y
175124
Aeinss
B910058
B12324
.LERT-F)
PR137 4
210478
nagany

Spooler Design and Theory of Operation

MACYY XVM ViARQQ

COpBIIF1

PUSH
Moy
MOV
MOV
MOV

MOV

CALL
JSR

POP
MOV
poP
Moy
MOV

ADD

PUSH
MoV
MOv

INCB
CALL
J8R

POP
MOV
CALL
JSR

BR

MOV
MOV
CMP

BNE
MoV
ADR
MoV
ADD

MOy
PUSH
May
MOV
MOY
POP
MOV
MOV
TSY
BR
RETURN
LENDC
CMP
BNE
MOV
DEC

BNE
MoV

PAGE 22+

R4
Ré4,=(SP)
R1, (R4}
R1,R4
6(8P),R2

10(5P),R3

COPBUF
PC,COPBUF

R4
(8P)+,R4
R2

(8P)+,R2
WLPCOD,R3

#6,8p

R4
R4,=(8P)
LPBM8A,RY

(RL)
PUTBLK
PC,PUTBLK

R4
(8P)+,R4
63

PC,0%

23
R4,RY
(RL1),R4

JSAVE LPWDCP ADD, ON STACK
1SET LPWDCP

JGET CONT, OF LPWDCP
TRESTORE R3,R2

1COPY CALLER BUFFER

?)SAVE LPWDCP ADD, IN R4

JCONT, OF LPCBCP ON STACK TOP??7
JGEY DEV.CODE IN R3, FOR PUTBLK
JCLEAN STACK

1SAVE RS

JSET LPBMSA

1PUT BUFF, ON DISK
JTEMP SAVE R\

JCHECK FOR LCLOSE

1SAVE R4
JGET C(LPWDCP) IN R4

#LPCLOS,=2(R4) JFF#*CR2?

78
Ri,R4

JRESTORE R4

TABLE+LFB,R2 1GET LP,LFB ADD, IN R2

PC,R2

HTABLE+LFb=, ,R2

LPCBAD,RY

(rR2)
(R2) ,»(SP)
#(R1), (R2)

(R1},RY
2(R1)
(SP)+,2(R1)

1SAVE OLD LFB
JSET LFB IN TABLE

JSET OLD LFB IN BUFFER

#=4,TW0DO(R1) JSET EOF CODE IN BUFFER

(5P)+ JRETURN TO 9 (NOT SUB RETURN)

SOCTSY,##CTLCY JDEBUG

13
(R3) %, (R4)+
R2

COPBUF
R4,02(8P)

JCOPY CALLER BUFFER

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-26

SPOLi1,.144
PL INTERRUPT SERVIPE

DOWIN AGN -

85022 2137y
201050
030268 11278
[1dLbad
.LILES]
05034 ong2ar

Spooler Design and Theory of Operation

MAZ1Y XVM ViADQQ

PAGE 23

'
1THIS ROUTINE HANDLES COMPLETION OF I/0 SOFTWARE INTERRUPT FROM THE

PLDUM]S
PLANRE?
PLRMD?

PLAUFS?
PLRBIPI
PLWDIPI
PLABTP?

'
!

PLINTI!

4
PLTNTS

11t

28
50%1
18¢

15818
1@et

4%

$ORIVER TASK IN PIREX, IT DESPNOLS THE SPOOLED DATA ONTO THE XY PLOTTER,

-

2IFDF SPL
BYTE @ JUNUSED

LBYTE o JONCE ONLY SW

JBYTE @ JBLOCK IN MOTION SW

LBYTE @ JEMPTY BUFFER COUNT

o JCURRENT BUFFER POINTER

" JCURRENT WORD POINTER

[INEXT BUFFER POINTER

LJENDC

.IFNDF 8PL

MoV OMDEVST, Ry

MOVB #10PS77,PLSPER(RY) JREPORT TASK NOT SUPPORTED
RETURN

LENDC

.IFDF $PL

MOV TABPDY,R1

BIS HLVLS, 0NPS JINHIBIT DISK INT,

cMP #=1,(RY1) 1ANY MORE TD 00?

BNE 13

MOV PLONAD,R3 JGET C(PLCBIP) IN R3
CLRB (R3)+ JRESET SW,'S

cLRB (R3)+ JBUMP TO PLBUFS

INCB (R3) e« JRELEASE BUFF,

MOV (R3),R3

CALL GIVBUF 1GIVE BACK BUFFER

BIC #4,048P0L SW INO, SET PL IDLE SW

RETURN

TST (R1) JYES, BLOCK IN MOTION?

BNE 38

MOV PLCIAD,R4)SK~124 YES, GET ADD OF PLCBIP IN R2
Mov (R4),R3 JRELEASE BUFFER

CALL GIVBUF

INCB w(R4)

S8 w1 (RA) 1BLOCK READ IN?

BEQ 43

CALL WAITBK IND

8R 123

MOV TABPDT,R2

MOV 2{R2),»2(R2) JSET. CBNaNBN

MOV #a, (R2) 1SET CRP

MoV PLOIAD,R3 1GET PLOBIP ADD, IN R3
MOV (R3),R4 JGET C(PLOBIP) IN R3 & BUMP 1D TwD}
MoV TWDL (R4),2(R2) JSET PL,NBN

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

27

Spooler Design and Theory of Operation

8POL11,141 MACLY XVM VIAGPD PAGE 23+

PL INTERRUPT SERVIFE

-3 MOV R2,R}Y JSAVE PLLCRP ADD, IN R1

52 MOV PLC1AD,R2 JGEY ADD, OF PLCBIP (N R2
53 Mov (R3), (R2) + J8ET PLCBIP

54 MOV (R3), (R2) 1SET PLWDIP

58 ADD Wa, (R2)

56 BR 55 JSEND WRITE REQ@ IF NOT SHUT WOWN
87 hEX) MOV PLWDAD,R2 $GET ADD OF PLWDIP IN R2
1] MOV #(R2),~(8P)

59 ADD #5, (SP) JEVEN BYTE COUNT

L.T] BRIC #177404, (SP)

61 ADD (8P), (RY) }BUMP CRP

62 ADD (SP)+, (R2) JBUMP LPWODIP

63 .13} BIT #4000, ##SPOLSW FSHUT DOWN?

64 BEQ 28

63 BIT H4,0uSPOLSW FSHUT PL?

.1} BEQ 2%

67 BIT H10200,045P0LSW JSHUT DESPOOLER

68 BE®Q 23

69 TST P (R2) 1LAST RECORS?

70 BNE 133

71 CMP w2 (K1) ,4(R1) JYES, ANY MORE DATA?

72 BNE 148

73 CALL 12% IND, SET TABLE ENTRIES

74 BR 118

75 143 MOV PLONAD,R2 18K=124 GET PLBUFS ADORESS
76 ADD H2,R2 FSK=124

77 cMPB #i,(R2) 1SKm124 ONE FREE BUFFER?

78 BNE 158 }SKmi24

79 TSTB] (R2) FSKe124 YES, BLOCK IN MOTION
8o BNE 158 18K=124

8 CALL 9% JSK=124 NO, GET NEXT BLOCK
82 BR 158 JSK=124 WAIT FOR BLOCK T0 COmME IN
83)

84 138 MOV OR2,RY JNO, SAVE BUFF ADD ON STACK
85 CALL STUPPT JSET UP TCB TO UNTI A LINE
86 MOV PC,RY 1GET PL,CRP ADD, IN R}

87 ADD NTABLE+PLTEOF~»_+4,R{

88 MOV (R2) 4R4 JCHECK FOR BUFFER EMPTY

89 MOV #(R2),=(SP) JGET BYTE COUNT

9 ADD #5, (SP) JEVEN BYTE COUNT

91 BIC #1774014, (SP)

92 ADD (SP)+,R4 JBUMP R4 TO PQINT TO PT WORD OF NEXT
93 MOV PC,R2 INO, GET ADD OF PLBUFS IN R2
94 ADD HPLBUF 8~ ,,R2

93 18T (R4) JLAST RECORD?

98 BEQ 63

97 CMP #=1, (R4)

o8 BEQ 6%

99 CMPB #i,(R2) JPLBUFS=1

100 BNE S5us

104 TST8 =(R2) JYES, BLOCK IN NEXT?

102 BNE 508

i3 CMP w2(R1),4(R1) INO, MORE TO DOE (CBN=LS8B)

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL1L,141 MACYLt XVM ViAGBD PAGE 28
ADDRESS TABLE

1 +SBYTL ADDRESS TABLE
2 '

3 295460 ADRTRL

4 20516p pM285A RKEANT LWORD RKYCBP

] « IFDF SLP

6 005162 @0355%5 | PANADI ,WORD LPONCE

7 JENDC

8 0p5164 0063M4 TARPLAL ,WORD TABLE+PLTEQF
9 +IFDF SPL

12 PLONAD? _WORD PLONCE

11 «ENDC

12 05166 205278 BTMPADS ,WORD BTMPST

13 05173 oa5272 STRKNAt ,WORD STBKNM

14 05172 on6254 TARLADI ,WORD TABLE

15 05174 906258 YARPrBt ,WORD TABLE+CBN

16 05176 am63a”" TARPLCY ,WORD TABLE+PLTEOF¥CBN
17 25200 A06272 TARCNHC! .WORD TABLE+CDTEOF+CBN
18 05202 naB364 TCRK4AL L WORD TCBDKY

19 LIFDF $CD

20 cDEPADY ,WORD cocelIP
21 £DeBADI WORD cCoclCP
22 LENDC

23 JIFOF SLP

24 05204 n04322 LPCBRADS ,WORD LPCBCP
25 05298 203562 LPcwADS ,WORD LPWDIP

26 +ENDC

27 » IFDF SPL

28 PLEBADT ,WORD RLCBCP
29 PLWDADt ,WORD PLWOIP
30 +ENDC

31 25219 206415 YCRKIAL ,WORD TCBDKY
32 5212 p9144m AFNDBRK! WORD FINDBK

33 05214 002124 ASPLFUL ,WORD SPLFUL TRNELIGNN
34 95216 an674o BUFLAD® ,WORD BUFLHD

385 . 1FDF SLP

38 05220 LPEPAD!

37 95220 0A356m _PrzaD: WORD LPCBIP
38 05222 704321 _PmMSAI ,WORD LPBMS

39 LENDC

40 05224 006270 TARCATS ,WORD TABLE«COTEOF

41 95228 ON6260 TARCRTE ,WORD TABLE#CRP

42 03230 0A611a TARPRTS ,WORD TABLE+PLTEOF+CRP

a3 LIFDF 8SPL
44 PLeIADt ,WORD PLCBIP
45 PLATAD: ,WORD PLOBIP
46 PLRMSAL WORD PLBMS
47 <ENDC

48 LIFOF 8CD

49 cDAMSAL ,WORD CDBMS
LT CDINTAE (WORD COINT
51 LENDC

52 95232 p06274 TARDCT! .WORD TABLESCDTEQF*CRP
53 25234 aabaryoe cDeAADY! WORD COCALL

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theor

of Operation

I OUTPUT TASK

SPACE LEFT IN BUFFER
FOR CALLER'S DATA?

COPY CALLER'S DATA INTO BUFFER
AND UPDATE BUFFER POINTERS

v

EQF?

SET EOB SWITCH
SET EOF SWITCH
SET LFB IN TABLE

!

CALL FINDBK FOR
AN UNUSED DISK BLOCK

Y

L SAVE DISK BLOCK # 41

Y

CALL PUTBLK TO WRITE
OLD BUFFER TO THE DISK

Y

CALL GETBUF FOR AN
UNUSED CORE BUFFER

y

SET NEXT BLOCK # IN
OLD BUFFER. SET BLOCK
IN NEW BUFFER

BUFFER FULL?

SET EOB FLAG (FOR DESPOOLER)
IN BUFFER

Y

CALL FINDBK FOR AN
UNUSED DISK BLOCK

Y

SAVE DISK BLOCK #

Y

CALL GETBUF FOR AN
UNUSED CORE BUFFER

!

SET NEXT BLOCK # IN OLD
BUFFER. SET BLOCK # IN
NEW BUFFER

Y

UPDATE POINTER TO BEGINNING
OF NEW BUFFER

!

CALL PUTBLK TO WRITE OLD
BUFFER TO THE DISK

'

Figure 5-=2

Task Call Service Routine

Spooler Design and Theory of Operation

Set the SPOOLER task control lines 19-23
registers _
Setup the disk TCB pointer lines 25-33
table

Setup and initialize BITMAP lines 35-54
Initialize and setup TABLE lines 55-64
Set the SPOOLER switches lines 65-67

LINE PRINTER OPERATIONS:

Initialize the LP call service lines 94-95, 101-104
routine switches and pointers

Clear all pending LP task re- lines 96-98
quests in PIREX get a free »
block on disk, get a buffer.

Set the NBN entry in TABLE. line 100
Process the next SPOOLER line 120
request

5.5.2 LP SPOOLING

All requests issued to spooled tasks (TCN = 0-177) after a 'BEGIN'
directive to the SPOOLER, are processed by the SPOOLER. This is effected
by PIREX. When the LP handler in the XVM issues a request to the LP
driver task in PIREX, the SPOOLER processes this request. The 'request
dispatcher' transfers control to the 'LP call service routine' and the
following operations are performed (refer to Figure 5-1):

Get the current word pointer page- 22, line 20
address

Check if spooling operations are lines 26, 22
disabled and, if disabled, exit

Point to the current word lines 26, 25
Get the caller's buffer address lines 26-28

and relocate that address

Get the byte count of the lines 29-31

current record, add the header
word byte count, and make the
byte count even

Move ahead the current word line 32
pointer by the size of the
current record

Compute the space remaining in line 33-36
the current buffer
Is the buffer full? lines 37-38

Spooler Design and Theory of Operation

Copy the caller's buffer lines 39, 123-127
Check for a .CLOSE record lines 41, 105-108
The record is not a .CLOSE; one lines 42, 48-54

more record can fit. Process
the next reqguest

The record is a .CLOSE record:; lines 109, 110, 112
save the o0ld Last File Block
(LFB) in TABLE

Set the new LFB in TABLE Line 113

Set the o0ld LFB in Header word 2 lines 114, 115
of the buffer

Set an end of file indicator in line 116

the buffer

Go to line 55)
The buffer is full. Set an indi- lines 55-57
cator to this effect in the

buffer

Get a free block on disk (FINDBK) line 58

Set a pointer to the next block lines 59-61
in trailer word 1

Set the "write block in motion" lines 63, 64
switch

Put the buffer on disk (PUTBLK) lines 62, 65
Get another buffer (GETBUF) line 67

Set the "current buffer" pointer lines 66, 68
for the new buffer

Set the block number in the line 69

current buffer

Set the current word pointer to lines 70, 71
word 2 in the buffer

Process the next request line 72

As disk blocks are written on the disk the Last Spooled Block (LSB)
entries in TABLE are updated when the completion of I/0O interrupt is
processed by the 'disk interrupt service routine' in the SPOOLER
(RKINT).

5.5.3 LP Despooling
When the LP device is idle and the first spooled data block is written

onto the disk the despooling operations are started in the RKINT routine
as follows (refer to Figures 5-1 and 5-3).

Speooler Design and Theory of Operation

CLEAR BLOCK IN UPDATE LSB
MOTION SWITCH IN TABLE

DECREMENT FREE
|_BUFFER S

TASK IDLE?

ONCE ONLY
L SWITCH SET?

FIRST READ?

LUPDATE CBN, CRP, CBN
IN_TABLE

SET BLOCK IN
MOTION SWITCH

[ouTPUT TASK?]

Y

LGO TO DONE}-{START UP TASK|

GO TO DONE

Figure 5-3

Device Interrupt Servicing Logic (For LP)

Spooler Design and Theory of Operation

WRITE PROCESSOR:

Reset the "write block in page 19, lines 20, 21
motion" switch

Set the LSB in TABLE lines 22, 23

LPONCE = 0, first time lines 24-27

through set LPONCE = 1

Set the "read block in " line 28

motion" switch

Get a buffer (GETBUF) line 29

Get a disk TCB (GETRKT) line 35

Read a block from disk . lines 32-34, 36, 37
(GETPUT) ‘

Return the disk TCB and line 38

then EXIT

READ PROCESSOR:

Is the block read = LFB? page 23, lines 43-45
Yes, set LFB = 1 line 46
Reset the 'read block in line 48
motion" switch

Decrement the LP free buffer line 49
count

LPONCE = 1, first time lines 50-53
through, start up LP .

Set Current Block Number line 66
(CBN) in TABLE

Set the current despooling lines 67-68
buffer pointer

Set the current despooling lines 69-70
word pointer -

Set the Next Block Number lines 71-72
(NBN) in TABLE :
Set Current Record Pointer line 73
(CRP) in TABLE

Set LPONCE = 2 " line 54

LP despooling is not shut lines 55-58
down; send the LP write

request

Set the LP busy switch line 60
Return the disk TCB and then

EXIT

Once despooling operations are started the 'LP interrupt service
routine' continues the despooling operations until there is no more
data to be despooled.

Spooler Design _and Theory of Operation

The following operations are performed here (refer to Pigure 5-1):

Protect against a disk page 21, line 24
interrupt

There's nothing more to do; lines 25-28
reset LPONCE

Reset LPBMD and increment the lines 29, 30
free buffer count

Return the buffer (GIVBUF) lines 31, 32
Set the LP idle switch and lines 33, 34
return

There's more to do; a block is lines 35, 36
in motion

Release the buffer (GIVBUF) lines 37-39
Increment the free buffer count line 40

Wait for a block to be read in lines 41-44
Set CBN - NBN in TABLE line 47

Set CRP in TABLE line 48

Set NBN in TABLE lines 49-52
Set the current despooling buffer lines 53-56
and word pointer

Shut down? sShut LP? Shut lines 64-69
despooler?

Current record in buffer is a lines 70-72

.CLOSE record, check if more
blocks to do

There are no more blocks reset lines 74, 77, 121-123
TABLE entries, switches and
then exit

One free buffer and no block lines 76-81

in motion

Get next block lire 82

Release buffer and wait to lines 83, 37-44
come in

The first record is not a .CLOSE, lines 86-87
send an LP write request

Point to the first word of the lines 89-93
next record

There are more records left and lines 96-101
one free buffer

There is no read block in motion lines 102-105
and more blocks to do

Get next block lines 106, 126-137

Return from interrupt call

Spooler Design and Theory of Operation

5.5.4 SPOOLER Shutdown

All spooling operations can be terminated by issuing the 'END' directive
to the SPOOLER. The following operations are performed (refer to
Figure 5-1):

Protect shutdown routine page 9, line 7
Clear any pending SPOOLER wakeup line 8
requests

Allow devices to run down lines 13-18
Shut down LP task lines 20-23
Turn off SEND11 lines 32-34
Test if shut down due to disk lines 35-36
error

If "END" shutdown, tell "SPOLL5" lines 37-39
that it has occurred

Disconnect SPOOLER lines 40-41

CHAPTER 6
SPOOLER TASK DEVELOPMENT

6.1 INTRODUCTION

This chapter discusses in detail the procedure for developing a spooled
task, and, for integrating it into the SPOOLER software. The develop-
ment of a spooled task1 in the UC15 system begins with the development
and installation of the task under the PIREX system, if not already

present (see Chapters 4 and 5).

Once this has been done, the following summary describes the steps

necessary to integrate it into the SPOOLER software:

1. Design and code the call service routine. (Refer to Figure
6-1.)
2. Design and code the interrupt service routine. (Refer to

Figure 6-1.)

DEVICE HANDLER _ | SPOOLER _ | TASK/DEVICE DRIVER
ON XVM ‘T o t o ON PDP-11
CALL side INTERRUPT side
Figure 6-1

SPOOLER Schematic

NOTE

The logical structure of the 'task call
service routine' and the 'task interrupt
service routine' depends upon whether the
task is an input or an output task. The
'task call service routine' is the de-
spooler for an input task and it is the
spooler for an output task. The 'task
interrupt service routine' is the spooler
for input tasks and it is the despooler
for output tasks.

1There is no program logic or coding connections between the device
driver tasks under PIREX and the spooler task. All communication to
the device driver is through the TCB only.

6-1

Spooler Task Development

3. Add code in the RKINT routine to handle the disk read or
write operations for this task.

4. Code a routine to setup TCB and issue request.
5. Add a TCB for this task.

6. Add code to the BEGIN directive processing routine to initia-
lize, and, (if necessary) startup this task.

7. Add code to the END directive processing routine to clear up
this task.

8. Add code to the 'request dispatcher' to dispatch calls to
this routine.

9. Add code to the 'device interrupt dispatcher' to dispatch
interrupts from this device.

10. 1Increase the size of TABLE by 6 words if not sufficient.

11. Add entries of frequently addressed tags to the central
address table.

12, Update DEVCNT and DEVSPP to ensure sufficient buffers and
TCBs.

13. Update FINDBK routine.

The remaining sections describe the above steps in more detail. The

Line Printer spooler task is used as a descriptive example.
6.1.1 Call Service Routine

This is the routine that normally processes calls from the handler
on the XVM. For an output task this routine spools data onto the
disk as indicated in Section 5.3.3. The operations performed by this

routine are discussed in detail in Section 5.4.2.

Normally, data from records are copied into a buffer until it is full.
As soon as a buffer is full, it is written onto the disk with a
pointer to the next block; and then a new buffer is obtained. This
process 1s continued until a special record that indicates the end of
the file is received. For the Line Printer, this is a record with
form feed and carriage return characters only. On receipt of this
record, the call service routine copies this record into the current
buffer and writes it out; regardless of whether the buffer is full or
not. This is done to ensure complete processing of a distinct logical
entity, a file. The call service routine sets only the LFB entry in
the TABLE. It uses the utility routines GETBUF, FINDBK, PUTBLK, and
DEQREQ.

Spooler Task Development

6.1.2 Interrupt Service Routine

Completion of I/O interrupts from the device driver in PIREX is pro-
cessed by this routine. For an output task, this routine despools the
data onto the device as indication in Section 5.3.5. The operations

performed by this routine are discussed in detail in Section 5.4.3.

The interrupt service routine for the Line Printer despools data from
the buffer onto the device by issuing requests to the task running
uider PIREX, This routine, like other despooling routines in the SPO-
OLER, is double buffered to increase throughput. Provision is made

in the routine to wait for a block to be read into core during heavy

disk utilization. This is done using the "block in motion" switch.
6.1.3 Code to Handle the Disk Read/Write Operations

All spooled tasks must perform certain functions on completion of a

read/write block disk operation, as, Section 5.5.3 describes in detail.

On completion of a read disk block request the TABLE entries must be
updated and the Line Printer started up if idle. If the Line Printer
is busy, control is transferred to the "DONE" section of code where

the disk TCB is returned to the pool and control is relinguished.

On completion of a "write block on disk" request, the buffer is returned
and the LSB entry in TABLE is updated. If the Line Printer is idle,

a request is issued for the Line Printer task to read in the next de-
spooling block. This is done by supplying the NBN1 entry in TABLE for
the Line Printer. If the Line Printer is not busy or after issuing

the read request as in read, control is transferred to the 'DONE'

section of code.
6.1.4 Routine to Setup TCB and Issue Reguest
These operations are performed at several places in the SPOOLER. To

optimize code this subroutine performs the TCB setup and request

issuing functions.

1See Section 5.4.7.

Spooler Task Development

The Line Printer routine performs the following operations (Figure
5-1) at tag STUPLT:

Get the address of the LP TCB page 11, lines 18-19
Go to setup common line 20

Set the buffer address specified line 31

in the TCB

Reset the REV in the TCB lines 32-33
Issue the request line 34
Return control line 35

6.1.5 TCB

The format of the TCB used by spooler tasks is almost identical to the
format of TCBs for tasks running under PIREX, except for the disk

TCB which has an extra word. The extra word is used to store the TCN
of the task for which the I/0 transfer was requested. Another dif-
ference is that the TCN present in word 'l' of all TCBs in the SPOOLER
has the unspooled bit set, i.e., TCN' = 2008 + TCN (0—1778). This is
to prevent the request from being queued to the SPOOLER. Also, word
*0' of all TCBs contains the SPOOLER task code instead of the API
information. This is to permit PIREX to transfer control to the 'device
interrupt dispatcher' in the SPOOLER on receipt of an I/0 completion
interrupt from a SPOOLER request.

6.1.6 Initialization in the BEGIN Routine

All SPOOLER tasks have to be initialized before starting of spooling
operations. The initialization normally consists of setting the
pointers, switches and variables to the right value, obtaining buffers,
block number on disk, etc. Section 5.5.1 explains these operations

for the Line Printer in more detail.
6.1.7 Cleanup in the END Routine

All SPOOLER tasks have to be cleaned up before termination of spooling
operations. The cleanup for the Line Printer consists of stopping the
LP driver task in PIREX and clearing all pending requests in the
task's TRL.

Spooler Task Development

6.1.8 Updating the Request Dispatcher

The request dispatcher in the SPOOLER contains code to check the TCN
of the current request being processed and to transfer control to the

appropriate routine. For the Line Printer (Figure 5-1) this is done at:
page 6, lines 36-38, 73
6.1.9 Updating the Device Interrupt Dispatcher

The SPOOLER is informed of completion of I/0 requests through the
PIREX Software Interrupt facility. PIREX calls the device interrupt
dispatcher, which determines the task that issued the request and

transfers control to the tasks interrupt service routine.
For the Line Printer this is done at:

page 17, lines 12-13, 19
6.1.10 Updating TABLE

The TABLE contains the complete record of the data being spooled and
despooled. Each task has a 6 word entry in this TABLE. TABLE size
must be increased (change the 'BLOCK XXX' statement at page 33, line 73)
based upon the number of tasks in the SPOOLER. Currently there is
sufficient space in the TABLE for 3 additional tasks.

6.1.11 Updating the Central Address TABLE

Code optimization in a PIC program is done by maintaining a table of
addresses for frequently used tags. This table contains the unre-
located addresses of tags at assembly time. These are converted to
absolute addresses (by adding the SPOOLER first address) by the once
only section of code in the SPOOLER (Figure 5-1, page 6, lines 12-26).

For the Line Printer (Figure 541) the following tags are present in
this table:

LPONCE page 28, line 6
TABPCB line 15
LPCBCP line 24
LPWDIP line 25
LPCBIP line 37
LPBMS line 38

Spooler Task Development

6.1.12 Update DEVCNT and DEVSPP

To facilitate automatic updating (increase or decrease) of buffers and
disk TCBs in the SPOOLER based upon the number of tasks in it, a condi-

tional parameter exists for each task.

DEVCNT and DEVSPP are modified for the Line Printer (Figure 5-1) at:
page 3, line 13-16

Tasks are assembled into the SPOOLER by defining the conditional

parameters of the form:
$XX = ZZZZ00
where

XX
22727

mnemonic of the task (LP for Line Printer)

a bit configuration (0400 for LP -~ there is a
bit for each task)

6.1.13 Updating the FINDBK Routine

Code is present in this routine to prevent allocation of the disk
block that is currently being despooled. This is necessary to insure
proper operation of the spooler because despooling operations are
halted when CBN = LSB, For the line printer task (Figure 5-1) this

is done at:

page 12, lines 83-84, 91-92

6.2 ASSEMBLING THE SPOOLER

To assemble the SPOOLER with the required task in it, it may be nec-
essary to edit the SPOL11 XXX source file to supply the appropriate
assembly parameter. To assemble the SPOOLER with the Card Reader
task also insert the line:
SCD = 20000 after the sub-title conditional assembly
parameters.
(For Plotter insert: S$PL = 10000)

An assembly of the above source (Figure 5-1) will produce a SPOOLER

with Line Printer and Card Reader tasks.

APPENDIX A

ABBREVIATIONS
API Automatic Priority Interrupt
ATL Active Task List
CAF Clear All Flags
CAPIn Clear APIn flag in DR15-C (CAPIO = 706104,
CAPIl = 706124, CAPI2 = 706144, CAPI3 = 706164)
CBN Current Block Numbers
CIOD Clear Input/Output done (706002)
CRP Current Record Pointer
XVM/DOS XVM Disk Operating System
EV Event Variable
LFB Last File Block
LIOR Load Input/Output Register (706006)
LSB Last Spooled Block
PC Program Counter
PIC Position Independent Code (can be loaded any-

where in memory) .

RDRS Read Status Register (706112)

REV Request Event Variable

XVM/RSX XVM Real Time System Executive

SAPIn Skip on APIn flag in DR11-C (SAPIO0 = 706101,
SAPI1 = 706121, SAPI2 = 706141, SAPI3 = 706161)

SIOA Skip on Input/Output data Accepted (706001)

TCB Task Control Block

TCBP Task Control Block Pointer

TRL Task Request List

UC15 PDP-11 Front End Processor and Interlace to XVM

APPENDIX B
CURRENTLY IMPLEMENTED TCBs

The general format for all task control blocks is as follows:

ATA

FCN

TCN

REV

15 8,7 g2,

L})]

! ATA ! ALV ! word ¢

: y_t v v 3t 3 : : e_v ' ¥ 1 ¥ :

4 FCN Y TCN 1 word 1l

: | DU SO NN NS NN N JN U NN DU AN N TN N | :

' REV i word 2

: $__ ¢ TV vO¥O P T RPN %o 1 Y :

4 Other data y word 3

’ : J

ticular

/ par /

E v word n
'

to this task
1t & 1 1 [] 11] [}

XVM API interrupt vector address

XVM APTI interrupt priority level. Must be 0, 1, 2,
or 3 (unless FCN = 3;.

Function to perform upon completion of this request.
Valid values are:

000 Interrupt XVM at location ATA, priority ALV.
001 Do nothing (except set REV)

003 Cause software interrupt to the PDP-11 task whose
task code number is in ALV.

0 if this request may be spooled.
1 if this request may not be spooled.

Task code number of the task which is to process this
request

Request Event Variable. Initially zero, set to a non-
zero value to indicate completion of the request.

The meaning of the various return values is described
below.

Currently Implemented TCBs

Returned REV value:

1 Successful (normal) completion.
=200 Non-existent task. The task code number (TCN) does not
correspond to any task currently in the PIREX system.
-300 Illegal ALV value. The request may or may not have been
performed - see individual request descriptions. The

XVM is interrupted at API level 3.

=777 Node Pool empty. PIREX is temporarily out of nodes, and
therefore is unable to insert this request into the appro-
priate list. Reissue the request after a brief delay.

Other The meanings of other returned REV values are given with
the descriptions of the task control blocks to which they
apply.

In the sections that follow, many of the task control block diagrams
show S and TCN combined into a single 8-bit quantity. This is done
to indicate that the particular task may never be spooled, and thus

S is always 1.

B.1 STOP TASK (ST)

This task provides the capability to stop one or all tasks in PIREX.
Stopping a task may immediately abort processing of the request the
task is currently processing, and also any XVM originated requests
on the task request list. The format of the task control block for
the stop task is as follows (note that this is a non-standard task

control block):

15 8,7 0
unused word O
A TCN 200 word 1
REV word 2
TCN If zero, this is a stop all tasks directive.
A If set unconditionally, abort the current request for this

(or all) task(s). 1If clear, allow the request currently
being processed by this (or each) task to complete if and
only if the request originated from the PDP-11. Only XVM
requests on the task request list will be aborted regard-
less of the setting of this bit.

Currently Implemented TCBs

All requests which are aborted via this request will never complete;
the request event variables (REVs) of such requests will never be set
to a non-zero value. A permanent task which is stopped via this re-
quest will be placed in the wait state; a temporary task will be placed
in the stopped state.

Returned REV values:

1 Successful completion

-600 Task to be stopped is not connected to PIREX.
Only applicable when TCN # 0.

B.2 SOFTWARE DIRECTIVE TASK (SD)

Descriptions of the software directives, including details of their
task control block formats, are given in Section 3.6, Software Direc-
tive Processing. The general task control block format for all soft-

ware directives is as follows:

15 8,7 0
ATA ALV word O
FCN 201 word 1
REV word 2
OPR word 3
Contents depend word 4
P upon L
1’ directive 1’ word n
OPR Indicate the exact operation (directive) to be performed.
For details see Section 3.6.
Returned REV values:
1 Successful completion
-400 Invalid OPR (directive/operation code) values.
Other See individual directive description in Section 3.6.

B.3 DISK DRIVER TASK (RK)

The disk driver task provides the capability of using the RKO5 cart-
ridge disk system. Task control blocks directed to this task have
the following format:

Currently Implemented TCBs

15 8,7 0
ATA ALV word O
FCN 202 word 1
REV word 2
Block Number word 3
R 6 | M
E i 3 word 4
A
LSMA word 5
Word Count word 6
unused Unit Function word 7
RKCS word 10
RKER word 11
RKDS word 12
ATA Usually 0478
ALV Usually 000
REV Set to 1 upon completion regardless of errors.
Block Number Disk block number to transfer.
REL 0 if request comes from XVM
1 if request comes from PDP-11
64K1 When 1 causes an additional 64K words to be
transferred.
MSMA Core address at which to begin transfer - most
significant bits.
LSMA Core address at which to begin transfer - least
significant bits.
Word Count Two's complement of the number of words to
transfer.
Unit Disk drive (unit) number on which to perform
the operation.
Function Operation to be performed.

lA zero in the word count field (word 6) causes a 64K word transfer.
The "64K" field (word 4) is used in conjunction with the word count
to specify transfers greater than 64K words. Thus to transfer 65K
words, the user would set the "64K" bit and place a minus -1024 in

: 10
the word count field.

Currently Implemented TCBs

Valid values are:

002 Write

004 Read

006 Write check
012 Read check

016 Write lock

For detailed descriptions of the functions, see the RK11-E Disk
Drive Controller Manual (DEC-11-HRKDA-B-D) .

RKCS Upon completion of the operation, these three
RKER words are loaded from the corresponding disk
RKDS controller registers. See the RK11-E Disk

Drive Controller Manual (DEC-11-HRKD-B-D) for
a description of their meaning.

If the request originates from the PDP-11, LSMA is the 16-bit PDP-11
byte address at which the transfer is to begin. If the request origi-
nates from the XVM, MSMA and LSMA together are the 17-bit XVM word
address at which the transfer is to begin. Upon completion of the
transfer, REV is always set to 1, regardless of whether or not the
transfer succeeded. RKCS, RKER, and RKDS must be examined to deter—

mine whether the transfer succeeded or an error occurred.

Returned REV Values:

1 Request complete. Request may or may not have succeeded.
-300 Illegal ALV value. Request complete.

B.4 LINE PRINTER DRIVER TASK (LP)

The task control block format is as follows:

15 8,7 0
ATA ALV word 0
FCN S{ 004 word 1
REV word 2
REL word 3
Buffer Address word 4
unused word 5
Status Flag word 6

Currently Implemented TCBs

ATA Usually 0568
ALV Usually 002
S Usually 0 (indicating spooled operation)
REL 0 if request originates from XVM
1 if request originates from PDP-11
Buffer PDP-11 byte address, if request is from PDP-11
Address XVM word address, if request is from XVM

Status Flag Unused if request is spooled.
Cleared to zero at beginning of request proces-
sing and set to 000001 at completion if request
is not spooled.

The buffer address argument refers to a line buffer of the following

format:
15 8,7 0
Mode Count word ©
LF unused word 1
word 2
- Data —
word n
Count The number of bytes of data in the buffer.
Excludes the four byte header.
Mode . Indicates transfer mode. Legal values are:
0 IOPS ASCII
1 Image
LF May be altered by the driver.
Data One line of output for the line printer.

The data sent to the line printer driver is a series of independent
bytes. If a byte is positive, it represents a 7-bit ASCII character.
If a byte is negative, it represents some number of spaces, the
number of spaces being equal to the absolute value of the byte. If

a line is in image mode, only the characters represented by the data
bytes are output. If a line is in IOPS ASCII mode, a line feed is
output before the beginning of the line unless the first character of
the line is a carriage return or form feed. A carriage return is
always output at the end of lines in IOPS ASCII mode. A line contain-
ing just the characters carriage return followed by form feed causes
no output in either mode, but rather represents a .CLOSE (end of file)

operation.

Currently Implemented TCBs

Line printer errors are not reported via returned REV values. The only
line printer error which can occur is for the printer to go off line
(become not ready). The line printer driver reports this by placing
the value 4 in the device error byte of its entry in the DEVST table
(see Section 3.6.4 on the Error Status Report Directive). When the
printer comes back on line the driver clears the device error byte and

outputs the line. Upon completion the REV is set to 1.

Returned REV Values:

1 Successful completion

=300 Illegal ALV value. Action may or may not have
been taken.

~-600 Spooler shut down. No action has been taken.
B.5 CARD READER DRIVER TASK (CD)

The task control block format is as follows:

15 8,7 0
ALA ALV word 0
FCN S| 005 word 1
REV word 2
unused word 3
Buffer Address word 4
ATA Usually 0558
ALV Usually 001
S Usually 0 (Indicating spooled operation)
Buffer PDP-11 byte address, if request is from PDP-11

Address XVM word address, if request is from XVM

The buffer address argument refers to a card buffer of the following
format:

15 8,7 0
Byte Count word O
Checksum word 1

word 2

Data ot
I ’T word n

Currently Implemented TCBs

Byte Count Always 80

10

Checksum Word checksum of the buffer
count)
Data 80lo bytes (40lO words) of data

The card data is not in ASCII.

in the following format

bit
bit
bit
bit
bit

~ O U W

000
001
010
011
100
101
110
111
Indicates
Indicates
Indicates
Indicates
Indicates

NOT

no punches in rows 1-7
row 1 punched
row 2 punched
row punched
row punched
row punched
row punched
row punched
row 8 punched
row 9 punched
zone 0 punched
zone 11 punched
zone 12 punched

N bW

E

All combinations of punches which cannot
be speciried in this manner are illegal.

(including the byte

Each card column occupies one byte

bits 0-2 Contents of rows 1-7 encoded as follows:

Any errors that occur are not reported by returned REV values. Instead

the IOPSUC numeric error code is placed in the devide error byte of the

card reader's entry in the DEVST table (see Section 3.6.4,

Error Status

Report Directive). When the error condition is remedied, the driver

clears the device error byte and the read operation continues. Ultimately

the read completes and REV is set to 1.

Returned REV Values:

1 Successful completion

-300 Illegal ALV values. Action may or may
not have been taken.

-700 Spooler shut down.

No action taken.

(Despooling not enabled)

Currently Implemented TCBs

B.6 PLOTTER DRIVER TASK (XY)

The task control block format is as follows:

15 8, 7 0

ATA ALV word O

FCN S | 006 word 1

REV word 2

REL word 3

Buffer Address word 4
ATA Usually 0658
ALV Usually 003

S Usually 0 (indicating spooled operation)
REL 000000 If request is from XVM

If request is from PDP-11

Buffer Address PDP-11 byte address, if request is from PDP-11l.
XVM word address, 1f request is from XVM.

The buffer address argument refers to a data buffer of the following

format:
15 8,7 0
Mode Count word O
unused word 1
word 2
P Data P
T’ | word n
Count The number of bytes of data in the buffer.
Excludes the four byte header.
Mode Indicates the function to perform and/or the

mode in which the data should be interpreted.
Valid modes are:

Currently Implemented TCBs

Line mode
Character mode

Initialize

[N VS I S

Pen selectl

377 End of file

Line mode data takes the following form. Each line is represented by

a pair of data words. The first word is the incremental change in the
X coordinate from the beginning to the end of the line, the second word
the change in the Y coordinate. If this is to be an invisible line -
i.e., it is to be drawn with the pen raised - 1000008 should be added
to the first word (change in X).

Character mode data is a series of ASCII characters to be drawn, one
character per byte. Initialize requires 8 words of data which specify
the character size and orientation for character mode plotting. The
pen select operation1 takes two words of data. The first is the pen
number for the XY311l plotter (1, 2, or 3). The contents of this word

are destroyed by the pen select operation. The second word must be

zero. An end of file merely raises the pen. (It also forces the XY

data through the spooler buffers if spooling is enabled.)

Returned REV Values:

1 Successful completion

-300 Illegal ALV value. Action may or may not have
been taken.

-600 Spooler shut down. No action taken.

lThis is used only by the XY311l plotter.

B-10

APPENDIX C
UC1l5 RELATED ERROR MESSAGES

IOoPSUC YYY XXXX

Where YYY denotes one of the following:

EST Stop all 1/0 Task
ESD Software Driver "
RKU Disk Cartridge "
DTU DECTAPE "
LPU Line Printer "
CDhU Card Reader "
PLU Plotter "
ESP Spooler "
EMA MACI11 "

XXXX denotes one of the following:

3 ILLEGAL INTERRUPT TO DRIVER

4

DEVICE NOT READY
12 - DEVICE FAILURE

15 - SPOOLER FULL WARNING MESSAGE
20 - SPOOLER DISK FAILURE - SPOOLING DISABLED

45 - GREATER THAN 80 COLUMNS IN
CARD

55 ~ NO SPOOLER BUFFERS AVAILABLE

72 - ILLEGAL PUNCH COMBINATION

UC1l5 Related Error Messages

74 - TIMING ERROR - CARD COLUMN
LOST - RETRY CARD

75 - HARDWARE BUSY - DRIVER NOT

76 - HARDWARE ERROR BETWEEN
CARDS

77 - UNRECOGNIZED TASK REQUEST -~
DEVICE NOT PRESENT

400 - SPOOLER EMPTY - PDR-15 INPUT
REQUEST PENDING

Standard format IOPS error messages:

Error Code

25 XY plotter - value too large for plotting.

27 XY plotter - mode incorrect.

200 Non-existent task referenced.

300 Illegal API level given (illegal values
are changed to level 3 and processed).

400 Illegal directive code given.

500 No free core in the PDP-11 local
memory.

600 ATL node for this TCN missing.

777 Request node was not available from.the

POOL; i.e., the POOL was empty and the
referenced task was currently busy or the
task did not have an ATL node in the
Active Task List.

601 System Memory Map Invalid
This indicates that the memory map
used by CONNECT/DISCONNECT is in-
valid. PIREX should be rebooted
before any CONNECT/DISCONNECT attempt.

602 TCB Out of Range
This indicates that the TCB address is
not within the 28K word addressing range
of the UNICHANNEL.

GLOSSARY

Active Task

An Active Task is one which:

is currently executing
has a new request pending in its queue
is in a wait state

W N e
.

. has been interrupted by a higher priority task.
Active Task List

A priority-ordered linked list of Active Tasks used for scheduling
tables., The ATL is a queue consisting of one node for each Active
Task in the system.

Busy/Idle Switch

A two-word storage area used to save TCBP's when processing a request.
Every task has a two-word Busy/Idle Switch. If the two words are zero,
the task is currently not busy and is able to accept and process a

new request. Bit 15 of the first word is used by the system to deter-
mine if the TCB came from an XVM or PDP-11 request., If zero, the re-
quest came from the XVM, otherwise it came from the PDP-11.

Call Side

All spoolers have a 'call side' where a set of data is passed by the
caller to the spooler (for output spooled devices/tasks) or data is
passed by the spooler to the caller (for input spooled devices/tasks).

This is done only when a request is made to the spooler.

Context Save

The storing of all active registers, including the program counter
(PC) and program status (PS), on the current task's stack. These saves

GLOSSARY-1

are done when higher priority tasks interrupt lower priority ones and
by device driver interrupt routines to allow them free use of the

general purpose registers.
Context Switching

The process of saving the active registers belonging to the current
task executing (a context save), determining a new task to execute,

and finally restoring the registers belonging to it.
Deque

Deque, pronounced deck, is a double-ended queue consisting of a list-
head and list elements, circularly linked by both forward and backward
pointers. Deques (linked lists) are used, instead of tables, to store
TCB pointers and ATL information. The list elements (commonly called
nodes) are initially obtained from a pool of empty nodes called the
POOL. Nodes consist of listhead and 2 words of data used to store the
caller's TCB pointer or ATL information. When a node is needed, it is
removed from the POOL and queued to the referenced task deque of the
ATL. When a node is no longer needed, it is zeroed and returned to
the POOL.

Dequeue
Remove a node from a queue.
Directive

A task which performs some specific operation under PIREX, e.g., con-

necting and disconnecting tasks.

Driver

A task which controls a hardware device. Drivers usually consist of
necessary program only rudimentary operations (e.g., read, write or

search). The more complex operations such as file manipulations and

syntax checking are usually performed by handlers.

GLOSSARY-2

Event Variable

A word or variable used to determine the status of a request. The
Event variable is set to indicate successful completion, rejection,
status, or a request still pending condition.

Interrupt Side

All spoolers have an 'Interrupt Side' where data is prassed by the
spooler to the device/tasks (for output spooled device/tasks) or data
is passed from the device/tasks to the spooler (for input spooler
devices/tasks). This occurs whenever output of data is complete or
input data is ready.

Linked IList

A deque consisting of nodes and listhead used to store system infor-
mation. An empty list consists of only a listhead.

Listhead

A two-word core block with forward and backward pointers pointing to
the next and previous list node or to itself if empty. The listhead
is a reference point in a circularly-linked list.

Local Memory

Core memory only addressable by the PbP-11. This is ordinary 16-bit
PDP-~11 core memory.

Node Manipulation

The process of transferring nodes from one deque structure to another.

Nodes

The list elements of a deque. All nodes consist of listhead, followed
by 2 words of data (list elements).

GLOSSARY-3

Nul Task

The Nul Task is a task which runs when no other task can. It consists
of only PDP-11 WAIT and BR Instruction to increase UNIBUS operations.

Permanent Task

A task in PIREX is said to be a permanent task if it is assembled into
PIREX, has space in all PIREX system tables and has a fixed task code
number.

POOL

A linked list of empty four-word nodes for use in any deque in the
system. The POOL is generated at assembly time and currently has 20
decimal nodes available.

Pop

To remove an Item (word) from the current task's stack.

Push

To put an item (word) onto the current task stack.

Queue

To enter into a waiting list. Queues in PIREX consist only of deque

structures.

Scheduling

The process of determing which task will be executed next. The opera-
tion is based on a priority ordered list of active tasks in the system
(ATL) .

Shared Memory

Core memory addressable by both the XVM and PDP-11. The shared mem-
ory is ordinary 18-bit XVM memory.

GLOSSARY-4

Spare Task

A task that runs under PIREX is said to be a temporary task if it is
not assembled into PIREX, has space in all PIREX system tables, does

not have a fixed task code number and its start address is not fixed.

The core occupied by the temporary tasks is not freed unless the tasks

are disconnected in the order in which they were connected.

SPOLSW

This is a register in PIREX which contains the spooler control and
status switches as indicated below.

BITS 0-7 Device busy Idle switch
'0' is idle and 'l' busy

BIT O Lp
1 CD
2 PL

3-7 UNUSED

BITS 8-15 Spooler State/Function switches
'0' if disabled and 'l' if enabled

BIT 12 DESPOOLER
13 SPOOLER
14 SPOOLING
15=1 SPOL11 PROGRAM CONNECTED TO PIREX
= SPOL11 PROGRAM NOT CONNECTED TO PIREX

Task

A PDP-11 software routine capable of being requested by the XVM or
PDP-11 through the PIREX software system. The task may be a device
driver, a Directive, or just a software routine used to carry out a

specified function. A task must have the format shown in Figure 2-1.

Task Code Number

All tasks in the PIREX system are differentiated by a numbering system
rather than by name. Task Code Numbers are used in TCBs and are cur—

rently assigned as follows:

GLOSSARY-5

CODE

-1 CL task
200 ST task
201 SD task
202 RK Driver task
203 DT Driver task
4 LP Driver task
5 CD Driver task
6 PL Driver task
7 SPOOLER task
11 currently not used
12 currently not used
13 currently not used

TCB - Task Control Block

A set of continguous memory locations (minimum of three) which contain

all necessary information for a task to complete its request. The con-
tents of the TCB must be defined prior to the request by the requesting
program (e.g., a XVM program).

A pointer to the TCB (called a TCBP) is then passed to the PDP-11 via
the LIOR instruction in the XVM or the IREQ macro in the PDP-11 to
actually initiate the reguest.

TCBP - Task Control Block Pointer

A pointer to a TCB. This pointer is passed to the PDP-1l1 either via

the LIOR instruction in the XVM or the IREQ macro in the PDP-11 when
initiating a request to PIREX.

GLOSSARY-6

Abbreviations, list of, A-1
ABORT request, 4-53
ABSL11l, 1-2, 2-1
Acronyms, list of, A-1
Active Task List (ATL), 3-5
(figure), 3-21
nodes, 3-14
Add a new task, 3-30
API trap locations, 3-1, 3-7
Assembler (ABSL1l), 1-2
Assembling spoolexr, 6-6

BEGIN routine, spooler, 6-4

Bitmap, spooler, 5-5

Block order for tasks, 3-34

Bootstrap load, 1-2

Buffers, spooler, 5-5, 6-2,
6-6

Byte instructions, 1-6

Call Service routine, spooler,
6-2

Card Reader Driver task, B-7

Card reader operation, 2-4

errors, 2-5

Character mode data, B-10

Checksum errors, 2-2

Clock Request Table (CLTABL),
3-16, 4-65

Clock task, 3-5

Code numbers of tasks, 4-3

Common memory, 1-3, 1-4, 3-5

Connect Task directive, 3-30

Core Status Report directive,
3-32

Crashes of tasks, 2-6

CR1l XVM/RSX handler (figure),
4-28

Delete a task, 3-29
Dequeue node (figure), 3-26
Despooling, 5-5, 5-32
Device Erxrror Status Table
(DEVST), 3-16
Device driver,
assembling and loading, 4-66
testing, 4-66
Device drivers, PIREX, 3-3,
4-55
Device handler construction,
4-6

INDEX

Device handlers,
XVM/DOS, 4-6
XVM/RSX, 4-~27
Device interfaces, 1-5
Device Interrupt Dispatcher,
spooler, 5-3, 6-5
Device Interrupt Service routines,
spooler, 5-4
Device Interrupt Servicing (LP)
(figure), 5-33
Device priorities, 4-2
Directive handling, 3-20
Directive processing routines,
spooler, 5-3
Disconnect Task directive, 3-29
Disk cartridge operation, 2-3
errors, 2-5
Disk Driver task, B-3
Disk errors during spooling, 2-6
DL support, optional, 3-4
Drivers,
see Device drivers
Dump programs, 4-66, 4-67

Editor program (EDIT), 1-3

End-of-deck card, 2-4

END routine, spooler, 6-4

Error handling, 2-5, 2-6

Error messages, UCl5, C-1

Error status codes, 3-16

Error Status Report directive,
3-33

Exit techniques, 4-63

FINDBK routine, spooler, 6-6
Function code, 3-8

Hardware errors, card reader, 2-5

Hardware interrupt, 3-1, 3-23
(figure), 3-24

Hardware system, 1-3, 1-4, 1-5

.INIT function, XVM/DOS device
handler, 4-23
Initialization,
task, 4-62
XVM/DOS handler, 4-23
XVM/RSX device handlers, 4-27
Internal tables, PIREX, 3-18, 3-19

Index-1

INDEX (CONT.)

Interrupt link, 1-5

Interrupt processing, 4-62

Interrupt requests, 3-23

Interrupt Service routine,
spooler, 6-3

Interrupts from PDP-11 to XVM,
4-25

Interrupts, XVM/RSX device
handlers, 4-53

Interrupt vectors, 3-18

LEVEL table, 3-17
Line mode data, B-10
Line Printer driver task, B-5
Line printer operation, 2-4
Listhead (LISTHD), 3-15
Lists and tables, updating, 4-4
Loading,
ABSL1l, 2-2
spooler, 5-6
system, 2-1
XVM/DOS, 2-2
XVM PIREX, 2-2, 3-1
Logic flow, PIREX, 3-11, 3-12,
3-13, 3-21, 3-22
LP driver (figure), 4-57
LP1ll DOS handler (figure), 4-7
LP spooling/despooling, 5-31,
5-32
LV support, optional, 3-4

MAC1l1, 1-2

MAC1ll Control program, 1-3
MCLOAD program, 1-3

Memory, common, 1-3, 1-4, 3-5
Memory map (figure), 1-5
Mnemonics for tasks, 3-34
Mnemonics, list of, A-1
Modifying programs, 1-3

NUL task, 3-5, 3-20

Operation of PIREX,
detailed, 3-19
flow chart, 3-2
simplified, 3-5
Operation of spooler, 5-5

PDP-11 Requesting Task, 4-26
Peripheral control, 1-3

Peripheral processor (PDP-11),
1-3, 1-6
Peripherals,
operation of, 2-3
Ucls, 3-23
Permanent task, 4-4, 4-5, 4-6
PIREX, 1-1
active task list (figqure), 3-21
background tasks, 3-4
Dequeue node (figure), 3-26
detailed operation, 3-19
device drivers, 3-3
hardware interrupts (figure),
3-24
loading, 3-1
operation (figure), 3-2
overview, 3-1
request processing (figure),
3-11
save registers (figure), 3-22
services, 3-3
simplified operation, 3-5
software directive processing,
3-27
STOP TASKS Task, 3-25
system tables and lists, 3-10
task block order, 3-34
task mnemonics, 3-34
PIREX MOVE directive, 3-36
Plotter Driver task, B-9
Plotter operation, 2-3
Poller routine, 3-17
Power Fail routine, PIREX, 3-4
Priority level,
of background tasks, 4-2
of devices, 4-2
of tasks, 4-1
Processor, PDP-11, 1-3, 1-6
Program modification, 1-3
Programs, support, 1-2

Queueing, 1-1

.READ requests, XVM/DOS handler,
4-26

READ requests, XVM/RSX handler,
4-54

Read/Write Operations (disk),
spooler, 6-3

Registers (figure), 3-22

Request Dispatcher, spooler, 5-3,
6-5

Request Event Variable (REV), 3-9

Request procedure, 3-19

Request processing, PIREX, 3-5

flow chart, 3-11

Index-2

INDEX (CONT.)

Request servicing (figure), 3-2

Request transmission, 4-24

Requests, XVM/RSX device
handler, 4-53

Set up TCB and Issue Request
routine, 6-3
Software,
card reader errors, 2-5
components, 2-6, 2-7, 2-8
directive processing, 3-27
interrupt, 3-25
modification, 1-3
routines in background mode,
3-4
Software Directive task, B-3
Spooled task, 3-23
SPOLLl utility routines, 1-1,
5-4
Spooler, 5-1
assembly, 6-6
components, 5-2
components (figure), 5-7
design, 5-2
errors, 2-6
LP despooling, 5-32
LP spooling, 5-31
operation, 5-5, 5-3¢
overview, 5-1
task development, 6-1
Spooler Control program (spoor) ,
1-2
Spooler Disk Area Generation
(SPLGEN) , 1-2
Spooler Installation program
(SPLOAD), 1-2
Spocler Status Report directive,
3-35
Spooling, 1~1
Stack area, 3-7
Status information, 3-1
Status report directives,
core, 3-32
errors, 3-33
spooler, 3-35
STOP TASKS task, 3-25, B-2
Support programs, 1-2
Switches,
on disk cartridge unit, 2-3
on plotter, 2-4
System tables and lists, 3-10

Table, spooler, 5-5
update, 6-5

Task,
code number, 3-8, 4-3
completion, 3-25
aerashes, 2-6
development, 4-1
directives, 3-29 through 3-37
entry, 4-62
format (figure), 3-6
installation, 4-4
mnemonics, 3-34
priority level, 4-1
Program code, 4-56
structure, 3-5
Task Call Service routines,
spooler, 5-3
(figure), 5-30
Task Control Block Pointer (TCBP) ,
3-5
Task Control Blocks (TCB), B-1
format and location for new
blocks, 4-2
format for PIREX, 3-7
format for spooler, 6-4
spooler operation, 5-5
Task Request List (TRL) , 3-15
Tasks,
PDP-11, 4-26
spooled or unspooled, 3-23
unsupported, 3-4
Task Starting Address (TEVADD) ,
3-17
Temporary task, 4-4, 4-5
Timed wakeup, 4-65
Transfer Vector Table (SEND11),
3-18

UCl5 peripherals, 3-23

UCl5 software components, 2-7

UNICHANNEL system (figures), 1-4,
1-6

Unspooled tasks, 3-23

Utility routines, spooler
(SPOL11l), 5-4

Wakeup feature, 4-65

-WRITE regquests, XVM/DOS handler,
4-26

WRITE requests, XVM/RSX handler,
4-54

XVM/DOS software components, 2-7
XVM/RSX software components, 2-8

Index~3

XVM UNICHANNEL
Software Manual
DEC—-XV-XUSMA-~A~-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

o

£

2

<+

o

c

2

[}

5 Is there sufficient documentation on associated system programs
: required for use of the software described in this manual? If not,
8 what material is missing and where should it be placed?

Q

[

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000ooao

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. Ej

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P, O. Box F
Maynard, Massachusetts 01754

digital equipment corporation

